Половые хромосомы Конфликт 

Если после прочтения предыдущих глав о генетических основах лингвистики и поведения у вас в душе осталось не­приятное ощущение того, что ваша воля и свобода выбора в действительности подчинены не вам, а наследуемым ин­стинктам, то эта глава еще больше усилит гнетущее ощуще­ние. Открытия, о которых сейчас пойдет речь, были наи­более неожиданными в истории генетики. До сих пор мы представляли, что гены являются всего лишь прописями белков, пассивно транскрибируемых по мере необходимо­сти в те или иные ферменты, или в строительный матери­ал для растущих клеток. Ген представлялся незаметным и услужливым слугой организма, готовым всегда прийти на помощь. Но сейчас вы узнаете совсем о другом положении вещей. Организм — раб генов, безвольная игрушка в их руках для реализации своих эгоистичных и амбициозных планов, а также поле битвы между конкурирующими кланами генов.

За хромосомой 7 по размеру следует хромосома X. От других хромосом ее отличает то, что в клетке нет пары для этой хромосомы. В половине случаев ее партнером высту­пает хромосома Y — маленький хромосомный рудимент. Но от наличия хромосомы Y зависит пол организма. Маленькая половая хромосома заставляет женский эмбрион превра­щаться в мужской у млекопитающих и мух, и наоборот, мужской эмбрион в женский — у бабочек и птиц. У противо­положного пола в клетках всегда две хромосомы X, но и в этом случае нельзя говорить о паре хромосом. В отдельно взятой клетке используется только одна случайно выбран­ная хромосома X, тогда как ее подружка инактивируется и плотно упаковывается в так называемое тельце Барра.

Таким образом, хромосомы X и Y тесно связаны с поло­вой дифференциацией и предопределяют (но не на 100%!) пол индивидуума. Поэтому их называют половыми хромо­сомами. У людей одна из хромосом X всегда приходит от матери. От отца может прийти либо хромосома Y, тогда вы мужчина, либо X — тогда вы женщина. Встречаются исклю­чения, например есть женщины с хромосомами X и Y. Но это исключение подтверждает правило. У таких женщин на хромосоме Y всегда выявлялись серьезные мутации в генах, ответственных за развитие организма по мужскому плану.

Все знают, что такое хромосомы X и Y. По крайней мере о половых хромосомах знают все, кто не прогуливал уроки биологии в школе. Хорошо известно также, что по причи­не отсутствия второй хромосомы X у мужчин такие гене­тические заболевания, как дальтонизм и гемофилия, встре­чаются гораздо чаще, чем у женщин. Эти генетические за­болевания связаны с мутациями в генах на хромосоме X. Как заметил один биолог, у мужчин хромосома X «летит без второго пилота», поэтому мутации, рецессивные у женщин, становятся доминантными у мужчин. Но в последние годы были сделаны открытия, касающиеся половых хромосом, которые потрясли основы биологии, хотя эти открытия остаются пока еще мало известными широкой публике.

Не часто в статьях такого высоконаучного и академи­чески сдержанного издания как Philosophical Transactions of the Royal Society of London (Философские труды Лондонского Королевского общества) встречаются подобные фразы: «Создается впечатление, что хромосома Y млекопитаю­щих возникла в результате непримиримого сражения со своими врагами. Хромосоме Y удалось спастись бегством и спрятаться за счет того, что она стремительно теряла все гены, не связанные с ее основной функцией» (Amos W., Harwood J. L998. Factors affecting levels of genetic diversity in natural populations.Philosophical Transactions of the Royal Society of London, Series В 353:177-186). «Непримиримое сражение», «враг», «спастись бегством»? Вряд ли вы ожидали, что эти термины применимы к молекулам ДНК, тем более в серьез­ном научном издании. Но примерно те же фразы, немно­го более выдержанные в стиле научной терминологии, вы найдете в другой статье, посвященной хромосоме Y и оза­главленной «Внутриклеточная вражда: конфликт на уровне генома, эволюция интерлокальных противоречий (ЭИП) и видоспецифическая Красная Королева» (Rice W. R., Holland В. 1997. The enemies within: intergenomic conflict, interlo- cus contest evolution (ICE), and the intraspecific Red Queen. Behavioral Ecology and Sociobiology 41: 1-10). В статье можно прочитать следующее: «Непреодолимое интерлокальное противоречие между хромосомой Y и остальным геномом привело к постепенному генетическому вырождению по­следней в результате последовательных совместимых с жизнью мутаций. Хромосома Y постепенно теряла свои гены в результате делеций и транслокаций, которые были результатом ЭИП — процесса, лежащего в основе антагони­стической эволюции полов». Даже если все сказанное — для вас китайская грамота, в глаза бросаются ключевые сло­ва «противоречия» и «антагонизм». А еще позже вышел в свет учебник с таким лаконичным, но броским названием: «Эволюция: четыре миллиарда лет войны» (Majerus М. et al. 1996. Evolution: the four ЫШоп year war. Longman, Essex). Что это нашло на ученых, что они заговорили языком падких на сенсации журналистов?

Когда-то в древние времена наши предки перешли от общего для большинства рептилий принципа определе­ния пола зародыша в зависимости от температуры яйца в кладке к более надежному генетическому контролю. Появлению половых хромосом предшествовало появление генов, управляющих половым диморфизмом, — морфоло­гическими отличиями между самцами и самками, делающи­ми их более приспособленными к выполнению своих спе­цифических функций. Так, у млекопитающих появились и закрепились гены, которые превращали женский организм зародыша, заданный по умолчанию, в мужской. У птиц на­оборот, возникли гены, превращающие мужской организм в женский. Половой диморфизм затрагивал многие мор­фологические признаки организмов. Например, развитая мускулатура и агрессивный характер больше способство­вали успеху самцов, тогда как для самок атлетическое сло­жение и тяга к сражениям были лишь бесцельной тратой энергии, которую лучше направить на защиту и воспитание потомства. Таким образом, нашлось довольно много генов, которые были востребованы в организме одного пола, но оказались лишними в организме другого. Их называют по­ловыми антагонистическими генами.

Половые хромосомы возникли в результате мутации, ко­торая нарушила естественный процесс обмена участками парных хромосом. События переноса генов с одной поло­вой хромосомы на другую стали редкими, что позволило каждой из хромосом эволюционировать своим собствен­ным путем. Например, два одинаковых гена, ответствен­ных за метаболизм кальция, оказавшись на разных хромо­сомах, могли продолжить эволюцию в сторону использова­ния кальция для рогов (версия гена на хромосоме Y) или в сторону накопления кальция в молоке (версия гена на хромосоме X). Чем сильнее шла дифференциация генов на половых хромосомах, тем более специализированными и, следовательно, более эффективными становились самцы и самки в популяции. На хромосоме Y накапливались гены, полезные самцам, но бесполезные или вредные для самок, а на хромосоме X шел тот же процесс, но в обратном на­правлении. Половые гены не только распределялись по разным хромосомам, но и вступали в схватку друг с другом. Например, недавно на хромосоме X был обнаружен ген DAX. В редких случаях этот ген удваивается на хромосоме X. В результате организм с хромосомами X и Y оказывает­ся не мужчиной, а женщиной. На хромосоме Y был найден подобный ген SRY, который управляет развитием мужского организма. Один ген SRY справляется с одним геном DAX, но две копии гена DA X побеждают SRY (Swain A. et al. 1998. Daxi antagonises sry action in mammalian sex determination. Nature 391: 761-767).

Из-за этого неожиданного проявления антагонизма мо­жет развиться неприятная ситуация. Разделение имуще­ства ведет к появлению личных интересов и конкуренции. Причем личные интересы отдельных половых хромосом и их взаимный антагонизм могут иметь мало общего с инте­ресами вида в целом. Другими словами, то, что хорошо для хромосомы X, может быть губительно для хромосомы Y, и наоборот.

Предположим, что на хромосоме X появился ген, кото­рый контролирует синтез токсичного белка, убивающего сперматозоиды с хромосомой Y. У мужчины с подобной хромосомой X детей будет не меньше, чем у других мужчин, но рождаться у него будут только девочки. Причем все его дочери будут нести в себе этот ген, тогда как любой другой ген в популяции будет передаваться только половине де­тей. Таким образом, новый ген изначально имеет двойное преимущество в распространении и закреплении в следу­ющих поколениях по сравнению со всеми остальными ге­нами. Стремительное распространение гена прекратится только с вымиранием части популяции, несущей ген, в ко­торой не останется больше мужчин (Hamilton W. D. 1967. Extraordinary sex ratios. Science 156: 477-488).

Слишком далеко зашли? Ничуть. Именно так и произо­шло в популяции бабочек Acrea encedon, в результате чего женские особи составляют у них 97%. И это только один из многих известных в природе случаев эволюционных конфликтов, называемых изгнанием половой хромосомы. Больше всего таких примеров известно у насекомых, но это потому, что насекомые более изучены. Теперь становится понятно, откуда в статьях, которые я процитировал выше, появились такие слова как «непримиримость», «конфликт» и «антагонизм».

Несколько статистических упражнений: поскольку клет­ки женского организма содержат две хромосомы X, а в клет­ках мужского организма одна хромосома X, а другая— Y,

можно заключить, что три четверти всех половых хромо­сом является хромосомами X, а одна четверть — хромосома­ми Y. Также можно сказать, что две трети всех хромосом X находится в женской части популяции и лишь одна треть — в мужской. Таким образом, шанс, что хромосома X нанесет смертельный удар по хромосоме Y, втрое превышает веро­ятность ответного удара. Продукт любого гена, находящий­ся на хромосоме Y, может стать целью, по которому нане­сет свой удар хромосома X, начав геноцид ненавистной ей хромосомы Y. Не удивительно, что в ходе эволюции хромо­сома Y избавлялась от всех генов, не связанных с половым диморфизмом, а остальные заставила замолчать, чтобы не провоцировать конфликт с хромосомой X. Именно поэтому Уильям Амос (William Amos) сказал о хромосоме Y, что она «убежала и затаилась».

Автор представил наиболее драматическую версию раз­вития событий. Как было отмечено, хромосома Y присут­ствует лишь в мужской половине популяции, в отличие от всех других хромосом, включая хромосому X. Таким образом, любой ген, каким бы полезным он ни был для особи и популяции в целом, если ему «посчастливилось» оказаться на одной хромосоме с «половым террористом» SRY, обречен на прозябание в лучшем случае в половине популяции. Перенос гена на любую другую хромосому бу­дет эволюционно полезным как для самого гена, так и для популяции. Хотя это не исключает дополнительного дав­ления со стороны хромосомы X, эволюционной пользы от перемещения генов с хромосомы Y вполне достаточно, чтобы объяснить ее генетическую вырожденность.

Хромосома Y так старательно освобождалась от всех слу­чайных генов, что большую ее часть сейчас представляет бессмысленная ДНК, не кодирующая никаких белков, ко­торые могли бы стать мишенью для хромосомы X. Помимо наиболее важного гена SRY, который мы упоминали выше, на хромосоме Y найден еще лишь один кодирующий уча­сток ДНК— так называемый псевдоаутосомальный реги­он. Ген SRY кодирует белок, который запускает каскад био­химических реакций, ведущих к формированию мужской особи. Никакой другой ген не удостоен права владеть всей

хромосомой, хотя данный ген играет роль всего лишь пере­ключателя процессов. Щелчок, за которым следует каскад превращений: зачатки половых органов развиваются в пе­нис и семенники, формы и конституция тела меняются с женских на мужские и запускается синтез множества муж­ских гормонов. В журнале Nature как-то была опубликована шуточная карта хромосомы Y, в которой были отмечены гены переключения телевизионных каналов, запоминания и пересказывания анекдотов, интереса к спортивным стра­ницам в газетах, привязанности к кровавым фильмам и не­способности сказать слова любви по телефону. Впрочем, шутки шутками, но все эти стереотипные мужские свойства действительно кодируются генами. В шуточной схеме не­верным было лишь то, что столь специфичные гены лежат на хромосоме Y. Мужской тип мышления кодируется гена­ми опосредованно через мужские гормоны, оказывающие сильное влияние на мозг, прежде всего — через тестосте­рон. Этот гормон заставляет мужчину вести себя в большем или меньшем соответствии со стереотипами мужского по­ведения. Но все эти гормоны начинают синтезироваться только после того, как отмашку даст белок гена SRY.

Продолжим изучение гена SRY. Он довольно своеобра­зен. В данном гене не допускаются никакие мутации. У всех мужчин на Земле в последовательности нуклеотидов нет отличий ни по одной букве. По предположениям ученых, последний раз этот ген изменялся у наших предков при­мерно 200 ООО лет назад. В то же время наш ген SRY силь­но отличается от аналогичного гена шимпанзе и горилл. Межвидовая частота изменений в этом гене в 10 раз пре­вышает среднюю частоту мутаций по всему геному. Этот ген изменялся в ходе эволюции намного быстрее, чем гены других важных белков.

Как же можно объяснить этот парадокс: абсолютный консерватизм внутри вида и высокая изменчивость между видами? Уильям Амос и Джон Харвуд (John Harwood) объяс­няют этот феномен проявлением антагонизма хромосомы X в отношении хромосомы Y, что заставляет последнюю «убегать и прятаться». Время от времени на хромосоме X возникает ген-преследователь, нацеливающий свою актив­ность на белок, кодируемый геном SRY. С этого момента селективное преимущество получают те редкие мутации в гене SRY, которые делают его белок неузнаваемым для бел­ка-преследователя. На фоне стремительно сокращающейся популяции мужчин, обладатели такого измененного гена по­лучают широчайшие возможности передать новый ген сле­дующим поколениям. В скором времени распространение новой версии гена SRY позволяет выровнять баланс между полами в популяции. В конце концов, новая форма SRYcra- новится единственной у всех мужских особей. В результате серии таких эволюционных прорывов, которые могут про­исходить очень быстро, не оставляя следа для археологов, дивергенция гена между видами стремительно нарастает, тогда как внутри вида ген сохраняет постоянство. Если тео­рия Амоса и Харвуда верна, то такие события в эволюции человека должны были происходить несколько раз после того момента, когда 5-10 млн лет назад разделились предки шимпанзе и человека. Причем последний раз такая «эво­люционная чистка» произошла примерно 200 ООО лет назад (Amos W., Harwood J. 1998. Factors affecting levels of genetic diversity in natural populations. Philosophical Transactions of the Royal Society of London, Series В 353: 177-186).

Возможно, вы почувствовали разочарование. Все те дра­матические страсти и конфликты, которые я обещал в на­чале главы, вылились в соревнование и маленькие подло­сти отдельных молекул. Вам не страшно? Подождите, ведь я еще не закончил свой рассказ и как раз сейчас собираюсь связать молекулярные конфликты с реальными проблема­ми людей.

Ведущий исследователь проблемы полового антагониз­ма Уильям Райе (William Rice) из Калифорнийского универ­ситета в Санта-Круз не так давно провел серию блестящих экспериментов. Но сначала давайте возвратимся на время к нашим далеким предкам, когда только появилась половая хромосома Y и начался процесс освобождения ее от ненуж­ных генов, которые могут послужить мишенью для хромосо­мы X. Зарождающаяся хромосома Y, по выражению Райса, стала прибежищем мужских генов. Поскольку хромосома Y никогда не встречается в женском организме, на ней могли без ущерба для популяции собираться гены бесполезные или даже вредные для женского организма, лишь бы они могли принести хоть какую-то пользу мужской особи. Но если вы до сих пор думали, что эволюция хромосом всег­да идет на пользу развитию вида, забудьте об этом сейчас. У плодовых мушек, так же, как и у человека, сперма пред­ставляет собой множество сперматозоидов, находящихся в богатой белками семенной жидкости. Белки семенной жидкости — это такие же продукты генов, как и все осталь­ные белки. Назначение этих белков до конца не известно, но у Райса зародилась интересная догадка: после полового акта у плодовых мушек (удобный объект для эксперимен­тов) эти белки попадают в гемолимфу самки и достигают нервных центров. Здесь они выступают в роли гормонов: угнетают половую страсть самки и стимулируют овуляцию. Тридцать лет назад мы бы рассматривали такой эффект как результат естественного отбора признаков, полезных для вида. Действительно, настало время для самки перестать искать половых партнеров и позаботиться о потомстве. «Удачный половой акт с самцом направил поведение самки в нужное русло», — слышим мы слова комментатора канала «Дискавери». Но сейчас ученым этот пример представля­ется в ином, более печальном свете. Самец пытается мани­пулировать самкой и заставить ее прекратить связи с дру­гими самцами и отложить яйца, оплодотворенные только его семенем. Причем такое поведение самца объясняется не его волей, а эгоистичными приказами генов полового антагонизма, сосредоточенных на его хромосоме Y (или запущенных белками, синтезированными под контролем генов хромосомы Y). Гены полового антагонизма самки развиваются в направлении противодействия чуждым им генам и белкам самца, делая самку все более устойчивой к манипуляциям. Результат полового противостояния обыч­но остается ничейным.

Райе провел очень сложный и хорошо продуманный экс­перимент, чтобы проверить свою идею эгоистичности по­лового противостояния. Он вывел линию плодовых мушек, в которой в результате близкородственного скрещивания на протяжении 29 поколений эффективность спермы сам­цов и устойчивость к ней самок стремительно развивались. В другой группе мушек Райе сделал все возможное, чтобы ослабить развитие устойчивости у самок. Когда, наконец, Райе скрестил самцов из первой группы с самками из вто­рой группы, эффективность спермы была такой, что про­сто убила самок (Rice W. R. 1992. Sexually antagonistic genes: experimental evidence. Science 256: 1436-1439).

Райе убежден, что половой антагонизм был двигателем эволюции видов. Гены, которые попадали в эпицентр по­лового антагонизма, отличаются чрезвычайной межвидо­вой изменчивостью. Например, высокая частота мутаций была выявлена у медуз «морское ушко» (Haliotis sp.) в гене лизирующего фермента, который используют сперматозо­иды для пробуравливания гликопротеинового (состоящего из углеводов и белков — примеч. ред.) покрова яйцеклетки. Это можно объяснить постоянным соревнованием между ферментом и все более усложняющимся покровом яйце­клеток. (Скорее всего, аналогичный ген также быстро эво­люционирует и у других организмов, в том числе и у чело­века.) Легкая проницаемость удобна для сперматозоидов, но вредна для яйцеклетки, поскольку в этом случае проско­чить могут сразу два сперматозоида, что нарушит развитие организма. Другой пример быстро изменяющихся генов (уже ближе к человеку) — это гены белков плаценты. Сейчас многие ученые с подачи Дэвида Хейга (David Haig) полага­ют, что взаимоотношения организма матери и плаценты, которая развивается исключительно под контролем генов, унаследованных эмбрионом от отца, лучше всего описыва­ет модель взаимоотношения паразита и хозяина. Плацента пытается преодолеть сопротивление материнского орга­низма и навязать свои требования к содержанию сахара в крови и кровяному давлению, которые больше устраивают эмбрион, чем мать (Haig D. 1993. Genetic conflicts in human pregnancy. Quarterly Review of Biology 68: 495-531). Более под­робно эти взаимоотношения мы рассмотрим позже, когда подойдем к хромосоме 15.

Ну а как же объяснить ухаживание? Классическим счита­ется пример отращивания павлином хвоста для соблазне­ния самок, или, точнее, пристрастие самок к длинным хво­стам вело к тому, что у предков павлина хвост становился все длиннее и длиннее. Коллега Райса Бретт Холланд (Brett Holland) предложил другое объяснение. Хвост у павлинов действительно для привлечения самок, но он становился все длиннее, поскольку самки становились все менее чув­ствительными к ухаживанию самцов. Самцы прибегают к ухаживанию как к альтернативному способу принуждения самки к спариванию, в то время как самки постоянно повы­шают порог чувствительности к ухаживанию, чтобы сохра­нить контроль над частотой и временем спаривания. Это может служить объяснением интересного поведенческого феномена, обнаруженного у двух видов тарантулов (Lyeosa). У самцов одного вида на передних лапках есть пучки ще­тинок, которые используются для ухаживания за самками. Паук размахивает перед самкой своими лапками, наблю­дая, приводит ли это ее в возбуждение. В эксперименте удаление пучков щетинок с лапок мало влияло на их успех или неудачу у самок. Но у другого вида родственных пауков, у самцов которых нет щетинок на лапках, искусственное добавление щетинок почти вдвое повышало успех самца у самки данного вида. Таким образом, щетинки у пауков от­росли. когда самки перестали на них реагировать. Другими словами, в ходе эволюции самок постепенно развивается их бесчувственность, а не чувствительность к ухаживанию самцов. Поведение ухаживания развивается у видов в ре­зультате антагонизма между генами самцов, нацеленными на сексуальное закрепощение самок, и генами самок, на­правленными на сопротивление такому закрепощению (Holland В., Rice W. R. 1998. Chase-away sexual selection: an­tagonistic seduction versus resistance. Evolution 52: 1-7).

Райе и Холланд пришли к тревожащему заключению: чем сложнее и развитее социальные отношения у вида, тем в большей степени поведение особей находится под влия­нием генов полового антагонизма, поскольку сложные от­ношения между особями противоположного пола создают подходящую среду для развития конфликта. Безусловно, наиболее сложные и многообразные социальные отноше­ния характерны для людей. Тогда становится понятно, по­чему в жизни людей половые отношения создают так много проблем и почему мужчины и женщины по-разному интер­претируют понятия «сексуальные домогательства» и «нор­мальная половая жизнь». Половые отношения развиваются не с учетом того, что хорошо для мужчины или женщины, а в контексте того, что выгодно их хромосомам. Способность к соблазнению женщин выгодна хромосоме Y, а нечувстви­тельность к соблазнению — хромосоме X.

Противоречия между группами генов проявляются не только в отношениях полов. Давайте предположим, что существует ген, который повышает способность человека лгать (может показаться, что пример далек от реальности, но, как мы знаем из предыдущей главы, способность быстро реагировать на ситуацию и находить правдоподобные объ­яснения, действительно, может зависеть от работы многих генов). Такой ген будет процветать вместе с его носителя­ми — пройдохами и мошенниками. Теперь представим, что на другой хромосоме существует ген или группа генов, кото­рые обостряют способность распознавать ложь. Его носи­тели будут преуспевать в том, что их невозможно обмануть. Оба гена начнут стремительно эволюционировать в попу­ляции, подстегивая друг друга, поскольку успех одного гена будет означать поражение другого за счет потери сорев­новательного преимущества у его носителей. Антагонизм между генами не ослабнет, даже если оба гена будут пред­ставлены в одном геноме. Именно такие процессы Райе и Холланд назвали эволюцией интерлокальных противо­речий (Interlocus Contest Evolution. ICE). Скорее всего, именно интерлокальные противоречия лежали в основе стремительного развития интеллекта у предков человека последние 3 млн лет и до наших дней. Традиционно счита­ется и во всех учебниках пишется, что мозг наших предков развивался для того, чтобы создавать орудия труда и разво­дить костер в саванне. Согласитесь, данная мотивировка развития мозга исчерпала себя еще задолго до появления нашей цивилизации. Современные ученые все больше воз­вращаются к идеям макиавеллизма: большой мозг был не­обходим для успешной гонки вооружений между теми, кто хотел подчинить себе других, и теми, кто не хотел подчи­няться. Райе и Холланд по этому поводу пишут: «Возможно, что феномен, который мы называем интеллектом, появил­ся как побочный продукт внутригеномного конфликта между генами насилия и генами отпора насилию» (Rice W. R., Holland В. 1997. The enemies within: intergenomic con­flict, interlocus contest evolution (ICE), and the intraspecific Red Queen. Behavioral Ecology and Sociobiology 41: 1-10).

 Философ Макиавелли (1469-1527) считал, что ради упро­чения государственной мощи не следует экономить сред­ства.

Простите, что я отвлекся на интеллект и его генетику. Давайте вернемся к проблемам отношений между полами. Наверное, наиболее сенсационным, противоречивым и горячо обсуждаемым было сообщение Дина Хамера (Dean Hamer) в 1993 году об обнаружении им на хромосоме X гена, влияющего на половую ориентацию, или, как его сра­зу же окрестили журналисты, гена гомосексуализма (Ha­mer D. Н. et al. 1993. A linkage between DNA markers on the X chromosome and male sexual orientation. Science261:321-327; Pillard R. C., Weinrich J. D. 1986. Evidence of familiar nature of male homosexuality. Archive of General Psychiatry 43:808-812). Примерно в то же время, когда Хамер опубликовал свою ста­тью, вышло еще несколько статей, указывающих на то, что гомосексуализм является врожденным явлением, а не ре­зультатом морального упадка оби^ства. Некоторые из этих работ были написаны учеными, которые сами имели нетра­диционную ориентацию. Например, Симон ЛеВей (Simon

LeVay), изучавший мозг и нервную систему в Институте Солка (Salk Institute for Biological Studies — Институт био­логических исследований Солка, Сан-Диего, США), стре­мился укрепить общественное мнение в своем убеждении, что гомосексуалистами рождаются. Эти ученые полагали, и в этом была своя логика, что общественные предубежде­ния против них ослабнут, если будет доказано, что их об­раз жизни — это не выбор, а судьба. Также предполагалось, убежденность в генетической предрасположенности к го­мосексуализму ослабит опасения родителей, что «голубые» эстрадные кумиры молодежи свернут их чад на нетрадици­онный путь. Если нет врожденной предрасположенности, то этого не произойдет. Действительно, консервативная нетерпимость к гомосексуалистам пошатнулась на Западе под влиянием фактов о генетическом наследовании поло­вых пристрастий. В Daily Telegraph от 29 июля 1998 года кон­сервативная Леди Юнг (Lady Young) писала: «Мы должны с большой осторожностью относиться к признанию свиде­тельств о том, что «кто-то был рожден гомосексуалистом», даже не потому, что это неправда, а потому что это прово­цирует борцов за права гомосексуалистов».

Как бы ни были заинтересованы некоторые ученые в том или ином результате, полученные результаты были объективными и беспристрастными. Сейчас нет сомне­ний, что в склонности к гомосексуализму наследственность играет существенную роль. Например, в одном исследова­нии близнецов было показано, что у 54 мужчин-гомосек- суалистов в 12 случаях их разнояйцовые братья-близнецы также были гомосексуалистами; тогда как среди 46 пар од­нояйцовых близнецов, где хотя бы один из братьев был го­мосексуалистом, в 29 случаях второй брат был той же ори­ентации. И хотя на близнецов также влияют одни и те же семейные и социальные факторы, достоверное увеличение случаев гомосексуализма у однояйцовых близнецов указы­вает на определенную генетическую составляющую, вли­яющую на выбор половых партнеров. Еще более дюжины публикаций подтверждают этот вывод (Bailey J. М., Pillard

R. С. 1991. A genetic study of male sexual orientation. Archives of General Psychiatry 48: 1089-1096; Bailey J. M., Pillard R. C. 1995. Genetics of human sexual orientation. Annual Review of Sex Research 6: 126-150).

Заинтригованный Дин Хамер решает установить, какие гены влияют на склонность к гомосексуализму. Он со свои­ми коллегами опрашивает 110 семей, где есть хотя бы один гомосексуалист, и обнаруживает весьма интересный факт. Похоже, что мужской гомосексуализм передается по ма­теринской линии. Оказалось, что у гомосексуалистов, как правило, был не отец с такими же наклонностями, а брат матери.

Этот факт дал повод предположить, что ген может на­ходиться на хромосоме X, поскольку только эта хромосо­ма у мальчиков наследуется исключительно от матери. Сравнивая генетические маркеры на Х-хромосомах у гомо­сексуалистов и у их родственников с традиционной ориен­тацией, Хамер быстро обнаружил зависимый маркер Xq28 в самом конце длинного плеча хромосомы X. Этот маркер встречался у 75% мужчин-гомосексуалистов и только у 25% мужчин с традиционной ориентацией. Случайность такого результата отвергается с вероятностью в 95%. Дальнейшие исследования показали некоторую связь этого гена с нетра­диционной ориентацией у женщин (Hamer D. Н. et al. 1993. A linkage between DNA markers on the X chromosome and male sexual orientation. Science261: 321-327).

Эволюционных биологов, таких как Роберт Трайверс (Robert Trivers), сообщение о том, что подобный ген мо­жет лежать на хромосоме X, заставило задуматься. С точки зрения эволюционистов версия гена, ведущая к гомосексу­ализму, должна довольно быстро исчезнуть из популяции. Однако получается, что данный ген в современном мире встречается не так уж и редко (по некоторым данным, при­мерно 4% мужчин — гомосексуалисты и немногим меньше — бисексуалы). Поскольку гомосексуалисты не имеют детей, или по крайней мере имеют меньше детей, чем мужчины с традиционной ориентацией, данный ген должен был дав- ным-давно исчезнуть, если, конечно, он не нес какого-ни­будь компенсирующего полезного свойства. Трайверс пред­положил, что поскольку хромосома X вдвое чаще встреча­ется у женщин, чем у мужчин, любой ген на ней, который способствует плодовитости женщины, будет эволюционно закрепляться, даже если он вдвое сократит плодовитость мужской части популяции. Например, предположим, что ген, обнаруженный Хамером, продлевает репродуктивный период женщины или, скажем, оказывает влияние на раз­мер ее груди (это только теоретическое предположение). Любое из этих качеств повлияет на плодовитость женщи­ны. Например, в средние века большая грудь могла быть свидетельством отменного здоровья и привлечь богатого жениха. Дети, родившиеся в таких семьях, не умирали от голода. Даже если у данного гена был побочный эффект, состоящий в том, что некоторые из сыновей предпочита­ли мужчин, ген мог оказаться полезным для популяции, по­скольку давал большие преимущества дочерям.

Таким образом, мы вновь возвращаемся к половому ан­тагонизму. Еще до открытия гена Хамером в публикациях сообщалось о связи гомосексуализма с половым антагониз­мом. Вполне возможно, что связь между маркером Xq28 и гомосексуализмом ложна или по крайней мере не такая яв­ная. Михаэль Бэйли (Michael Bailey) продолжил изучение наследования гомосексуализма в поколениях и уже не на­шел четкой зависимости в передаче предрасположенности к нему по материнской линии. Несколько других ученых повторили работу Хамера и не нашли четкой связи между маркером Xq28 и гомосексуализмом. В настоящее время ка­жется вероятным, что связь, установленная Хамером, была присуща лишь той семье, которую он обследовал. Впрочем, сам Хамер весьма осторожен в своих заключениях и гово­рит, что пока не обнаружен сам ген, рано делать какие-либо выводы (Bailey J. М. et al. A family history study of male sexual orientation: no evidence for X-linked transmission. Behaviour Genetics, in press).

 Статья Бейли с соавторами, которую выше приводит автор как находящуюся в печати, так и не вышла в свет. После выхода книги Мэтта Ридли Михаэль Бэйли издал много других статей, посвященных генетике половой ориента­ции, но ни в одной из них он не опровергал гипотезу о том, что данные гены лежат на хромосоме X, но и не подтверж­дал этого. «Генетические исследования семей с близне­цами дают основание полагать, что половая ориентация находится под влиянием генов, но пока не обнаружен ни один ген, для которого это влияние было бы подтвержде­но экспериментально», — цитата из его статьи, написан­ной в соавторстве (Mustanski В. S., Chivers М. L., Bailey J. М. 2002. A critical review of recent biological research on human sexual orientation.Annu Rev Sex Res. 13: 89-140).

Кроме того, ситуация с теорией наследования гомосек­суализма осложнилась тем, что появилось серьезное аль­тернативное объяснение этому явлению. Стало известно, что нетрадиционная сексуальная ориентация коррелиру­ет с очередностью рождения детей. Мужчина с одним или бсшьшим числом старших братьев с большей вероятностью станет гомосексуалистом, чем мужчина без братьев или имеющий только младших братьев. Наличие старших или младших сестер никак не влияет на эту закономерность. Закономерность оказалась настолько сильной, что каждый старший брат увеличивает вероятность гомосексуализма у младшего брата на х/у (В житейском понимании, это не так много. Если «нормальный» уровень гомосексуализма принять за 3%, то возрастание вероятности стать гомосек­суалистом до 4% как раз и будет увеличением на Vs-) Об обнаружении этой закономерности сообщали в Англии, Голландии, Канаде и Соединенных Штатах Америки, где проводились наблюдения над разными социальными груп­пами людей (Blanchard R. 1997. Birth order and sibling sex ratio in homosexual versus heterosexual males and females. Annual Review of Sex Research 8: 27-67).

Многим эта идея очередности гомосексуализма может показаться квазифрейдистской теорией: что-то в отноше­ниях в семьях со старшими братьями может способствовать развитию гомосексуальных наклонностей. Но как это было всегда, фрейдистское истолкование явления оказыва­ется ложным. (В старом представлении Фрейда о том, что гомосексуализм развивается в семьях с волевой матерью и отстраненным отцом, вероятнее всего, перепутаны след­ствие и причина. Женоподобный юноша в семье шокирует отца и вызывает естественную озабоченность у матери.) Объяснение этого феномена, скорее всего, лежит в сфере проявления полового антагонизма.

Важным моментом при объяснении этого явления высту­пает тот факт, что очередность рождения никак не влияет на гомосексуальные наклонности у девочек. Наличие стар­ших сестер тоже никак не сказывается на склонности юно­ши к гомосексуализму. Что-то важное происходит в утробе матери, что развивает у младших братьев эту наклонность. Наиболее убедительно это явление связывают с тремя гена­ми на хромосоме Y, которые кодируют мембранные клеточ­ные белки — H-Y антигены. Эти белки не оказывают никако­го влияния на развитие первичных и вторичных половых признаков, которые полностью находятся под контролем тестостерона и антимюллерового гормона. Значение этих белков только сейчас начинает расшифровываться.

Эти белки назвали антигенами по той причине, что они вызывают иммунный ответ у матери во время вынашива­ния плода. Вполне предсказуемо, что иммунный ответ будет сильнее с каждой новой беременностью сыном (женские эмбрионы не выделяют данные белки, так как у них нет хромосомы Y, где эти гены находятся). Рэй Блэнчард (Ray Blanchard), один из исследователей, изучавших эффект вли­яния очередности рождения на гомосексуализм, предполо­жил, что истинное назначение белков H-Y состоит в том, чтобы запустить определенные биохимические реакции в тканях, в частности — в головном мозге. Позже были полу­чены подтверждения такого действия белков в опытах на мышах. Так, сильный иммунный эффект со стороны матери может привести к нейтрализации этих белков в теле эмбри­она, что, в свою очередь, помешает правильному созрева­нию мозга будущего мужчины, хотя половые органы будут развиваться нормально. В экспериментах мышат иммунизи­ровали сывороткой против белков H-Y, в результате вырос­шие мыши-самцы не проявляли никакого интереса к самкам в отличие от контрольных самцов. К сожалению, пока не известно, как и на что влияют эти белки. Похожие резуль­таты были получены в опытах с плодовыми мушками дрозо­филами. Самцы мушек демонстрировали поведение самок, если у них в геноме в определенный момент запускалась экспрессия гена, названного трансформером (Blanchard R., Klassen R 1997. H-Y antigen and homosexuality in men .Journal of Theoretical Biology 185: 373-378; Arthur В. I. et al. 1998. Sexual behaviour in Drosophila is irreversibly programmed during a crit­ical period. Current Biology 8: 1187-1190).

Люди — это не мыши и не дрозофилы. Есть много свиде­тельств в пользу того, что половая дифференциация мозга продолжается после рождения. Абсолютно неверным бу­дет утверждение, что по ментальности гомосексуальный мужчина в точности соответствует женщине. Половые гормоны оказывают мощное влияние на развитие мозга по мужскому типу. Но это не исключает возможности, что при отсутствии влияния определенных гормонов на ранних этапах развития происходят некие изменения, которые мо­гут стать причиной влечения к особям своего пола.

Билл Хамильтон (Bill Hamilton), первым высказавший идею о половом антагонизме, прекрасно понимал, насколь­ко это изменит наши представления о том, что такое ген. «Пришло время понять, — пишет он, — что геном, это не монолитный банк данных с юркими служащими, призван­ными служить одной цели — поддерживать в нас жизнь и способствовать появлению детей, — как я сам до сих пор считал. Сейчас геном мне все больше напоминает пар­ламент, где в непримиримой схватке сталкиваются эгои­стичные фракции». От нового взгляда на геном Хамильтон переходит к переосмыслению того, что такое разум: «Мое самосознание и мое неделимое естество перестали быть таковыми, какими я их себе представлял, и мне не следует стыдиться жалости, которую я испытываю по отношению к себе. Я всего лишь посол в этом мире, нанятый на службу хрупкой коалицией. Я всего лишь исполнитель противо­речивых приказов несносных правителей раздираемой ра­спрями империи. Уже в том, что я пишу эти слова, или даже в моей способности написать эти слова звучит претензия на существование меня как чего-то целого, хотя я знаю, что глубоко во мне этой целостности нет. Я представляю собой сложную смесь мужского и женского начал, моих родителей и предков, многочисленных сегментов хромосом, которые сплотились во враждующие группировки за миллионы лет до того, как первые кельты и саксонцы из поэмы Хаусмана (Housman's poem A Shropshire Lad — Парень из Шропшира) появились на реке Северн» (Hamilton W. D. 1995. Narrow ro­ads of gene land. Vol. 1. W. H. Freeman, Basingstoke).

Представления о генах, вступающих в конфликты друг с другом, и о геноме как о поле битвы между генами детства и генами отцовства или между мужскими и женскими гена­ми — это новая концепция, о которой пока мало известно широкой публике. Но эта концепция уже успела пошатнуть философские основы биологии.








Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Наверх