• Глава 1. Плюсы-минусы оптоволокна
  • Глава 2. «Последняя миля»
  • Глава 3. «Последний дюйм»
  • Глава 4. Воздушные Замки
  • Часть 3.

    Магистральные каналы связи

    Глава 1.

    Плюсы-минусы оптоволокна

    Прежде всего определимся с тем, что представляет собой Интернет: Это несколько огромных глобальных и региональных магистральных сетей связи, объединённых друг с другом. Основным физическим носителем таких сетей является оптоволокно, преимущества которого над медными кабелями давно известны: это и отсутствие побочного электромагнитного излучения, и невосприимчивость к электромагнитным помехам, и повышенная дальность передачи данных (от 70 до 300 км) благодаря минимальным потерям из-за рассеивания света и, конечно, повышенная пропускная способность. Наконец, в отличие от электрических цепей, для передачи данных по оптоволокну требуется всего один проводник. Недостатки оптического волокна, вызванные физическими свойствами самого материала, тоже известны: относительная хрупкость (невозможность сгиба оптического кабеля под прямым углом), трудность обнаружения места излома, а также необходимость использования специального оборудования для полировки концов кабеля.

    Однако все эти недостатки — ничто по сравнению с потенциальными возможностями оптоволокна. Теоретическая пропускная способность этого носителя — 100 Тбит/с, но современные сети позволяют достичь только скорости в 1 Тбит/с, которая, впрочем, тоже впечатляет. На этой оптимистической ноте обычно и заканчивается описание магистральных сетей в «компьютерной прессе». О чем же умалчивают компьютерщики? О том, что прекрасно известно связистам. Дело в том, что в настоящее время используется только часть теоретически возможной полосы пропускания оптоволокна. В значительной степени это вызвано несовершенством технологии изготовления стеклянных волокон, в которых присутствуют ионы воды, поглощающие свет как синего, так и красного и инфракрасного спектров. Одним из первых производителей, предложивших решение этой проблемы, была компания Lucent Technologies, которая ещё в 1998 году объявила о разработке оптоволокна, почти полностью очищенного от ионов воды. По утверждению разработчика, ширина полосы этого всеволнового носителя увеличена на 100 нм по сравнению с обычными одномодовыми световодами. В результате появляется возможность использовать для передачи данных ранее не задействованную область 1400 нм. Уже существуют опытные образцы с пропускной способностью более 10 Тбит/с, но широкое внедрение таких сетей пока не началось.

    Так уж и быть, знаний в области физики или химии от певцов «мультимедийного завтра» никто и не требует, но разбираться в технологиях передачи данных они просто обязаны. Какие же технологии используются сегодня в магистральных сетях? В первую очередь это технология спектрального уплотнения WDM (Wavelength Division Multiplexing), позволяющая одновременно передавать по оптоволокну несколько сигналов с различной длиной волны. К примеру, при работе в области 1550 нм стандартом G.692 Международного союза электросвязи предусматривается до сорока каналов с шириной полосы 100 ГГц (около 0,8 нм) и нагрузкой на каждый канал в 2,5 или 10 Гбит/с. Работы по совершенствованию технологии WDM продолжаются: планируется довести ширину канала до 0,4 и даже 0,2 нм, а скорость передачи данных — до 160 Гбит/с.

    Прекрасная технология, жить бы да радоваться. Однако специалисты знают, что у спектрального уплотнения есть один принципиальный недостаток: для усиления и коммутации оптический сигнал сперва преобразуется в электрический, а затем обратно в оптический. Этот рудимент прошлого усложняет и удорожает построение магистральных сетей, поэтому будущее — за полностью оптическими (или фотонными) сетями, которые в силу дороговизны и технологического несовершенства пока не получили распространения. Однако перспективные наработки в этой области, безусловно, имеются: уже сегодня при использовании усилителей на основе оптоволокна, легированного эрбием (EDFA), появляется возможность передавать данные по оптическим сетям на расстояние больше тысячи километров. Для маршрутизации сигналов с разной длиной волны в таких сетях применяются микроэлектромеханические системы коммутации (MEMS), состоящие из миниатюрных зеркал. В лабораторных условиях уже испытываются системы маршрутизации, вообще не имеющие механических частей, в частности маршрутизаторы на основе жидких кристаллов, однако пока они могут предоставить всего 16 портов, что вдвое меньше возможностей современных микрозеркальных систем. Поэтому воспевать фотонные сети пока рано.

    В своё время огромным достижением считались синхронные оптоволоконные сети связи, которые строились телефонными компаниями для цифровой передачи голосовых данных. В Европе эти сети получили название SDH (Synchronous Digital Hierarchy — синхронная цифровая иерархия), а в Северной Америке — SONET (Synchronous Digital NETwork — синхронная цифровая сеть связи). Такие сети гарантируют обещанную пропускную способность, а также позволяют гибко изменять скорость передачи данных от 155 Мбит/с до 40 Гбит/с. Со временем в сети SDH проник и Интернет, однако эти сети в силу своей специфики не были оптимизированы для передачи данных и коммутации пакетов, поэтому работа над новыми стандартами, рассчитанными на взаимодействие с кабельными системами Ethernet и IP/MPLS, продолжается до сих пор. Всем известны достоинства технологии передачи данных Ethernet: дешевизна и простота построения сети. Оптимизация SDH под Ethernet (особенно под 10-гигабитный) теоретически означает огромную пропускную способность при минимальных затратах оператора и пользователя на оборудование. Если использовать 10-гигабитный Ethernet вместо применяемых сегодня в глобальных сетях интерфейсов Frame Relay или ATM, то скорость передачи данных в сетях SDH максимально приблизится к 10 Гбит/с. Такие решения представляются оптимальными, к примеру, для организации городских сетей на основе SDH. Но пока все реализованные проекты можно пересчитать по пальцам.

    Если в локальных сетях технология Gigabit Ethernet практически вытеснила ATM (Asynchronous Transfer Mode — режим асинхронной передачи), то в магистральных сетях, в том числе и глобальных корпоративных, ATM, несмотря на дороговизну оборудования, остаётся одной из широко используемых технологий. Главным достоинством ATM является возможность коммутации каналов и пакетов в сочетании с постоянной заказной скоростью передачи данных и низким временем задержки. Тем не менее, производительность ATM серьёзно тормозится из-за необходимости преобразования IP-пакетов в 53-байтные (53-октетные) ячейки ATM и обратно. Поэтому современное ATM-оборудование обзавелось поддержкой метода MPLS, созданного, для сопряжения протоколов IP и ATM.

    Протокол IP, как и все в этом мире, имеет не только преимущества, среди которых быстродействие, дешевизна и постоянная готовность, но и такие недостатки, как использование сетевого протокола без установления соединения, низкая защищённость и отсутствие поддержки качества услуг (QoS). Открытый метод многоуровневой коммутации по меткам MPLS, разработанный в конце 90-х годов прошлого столетия, позволяет избавиться от многих недостатков IP. Присвоение «меток» потоку данных повышает производительность и упрощает маршрутизацию потоков, которая осуществляется не на основе анализа многоуровневой информации, а по «меткам» определённой длины. Кроме того, благодаря MPLS появляется возможность использования QoS (предусмотренного в ATM), что необходимо для создания виртуальных частных сетей (VPN). Технология MPLS оказалась настолько удачной, что действующие сети на её основе уже появились и в России. К примеру, компания «ТрансТелеКом» c апреля 2004 года предоставляет услуги VPN на базе своей оптоволоконной магистрали с наложенной сетью IP/MPLS в девятнадцати регионах России, а телефонный оператор «Комстар» с января 2004 года строит собственную мультисервисную сеть на основе MPLS.

    Глава 2.

    «Последняя миля»

    Прогресс очевиден, но пожинать его плоды придётся ещё нескоро. Здесь все упирается в ограниченные возможности «последней мили», которая реализуется, как ни странно, по своего рода «обходным» технологиям. Практически полностью сошла на нет превозносимая ещё лет пять назад теми же компьютерщиками технология ISDN (Integrated Service Digital Network — цифровая сеть с интеграцией служб), разработанная для доставки по обычным телефонным абонентским линиям оцифрованных голосовых сигналов и данных. Теоретическая пропускная способность сетей ISDN составляет всего 160 Кбит/с, а реальная — 144 Кбит/с (128 Кбит/с — полезный сигнал, 16 Кбит/с — синхронизация и кадрирование), а оборудование для таких сетей остаётся весьма дорогим. Поэтому, хотя ISDN ещё используется в ряде стран (например, в Северной Америке и Германии) для доступа в Интернет, массовое признание давно получили более скоростные технологии, прежде всего xDSL (Digital Subscriber Line — цифровая абонентская линия).

    xDSL также обеспечивает цифровую передачу данных по обычной телефонной линии, но при этом пропускная способность таких сетей существенно выше, чем у ISDN. Существует множество вариантов xDSL, из которых самый распространённый — ADSL (Asymmetric Digital Subscriber Line — асимметричная цифровая абонентская линия). Поскольку, как правило, пользователи получают больше информации, чем отправляют сами, асимметричная линия даёт возможность повысить скорость входящего трафика за счёт ограничения скорости исходящего. Максимальная скорость входящего трафика в сетях ADSL составляет 6,144 Мбит/с, а исходящего — 640 Кбит/с (из них 64 Кбит/с используется сетевым управляющим каналом). Однако и тут нас ждёт подвох, да ещё какой: максимальная скорость передачи данных в таких сетях достижима далеко не всегда. Ограничивающим фактором является качество самой телефонной абонентской линии, электрические характеристики которой нестабильны даже в самых развитых странах. Поэтому в ADSL-модемах применяется адаптивная технология, гарантирующая лишь максимальную скорость доступа, возможную на используемой линии. В России, например, можно встретить ADSL-подключение со скоростью входящего трафика 32 Кбит/с, что нормально, пожалуй, только для аналогового модема. Тем не менее, ADSL довольно быстро распространяется по стране как технология доступа в Интернет с оптимальным соотношением цена/качество. Коммерческое предоставление услуг на основе ADSL началось ещё в 2000 году компаниями «Вэб Плас» в Санкт-Петербурге, а также МГТС и «МТУ-Интел» («Точка.ру») — в Москве. Однако массовыми эти услуги так и не стали. По-видимому, операторы намеренно завышают цены и предлагают клиентам только дорогостоящие абонентские устройства от крупнейших брэндов, поскольку пока не в силах обслуживать десятки и сотни тысяч подписчиков.

    Ещё один вариант асимметричной xDSL — VDSL (Very-high bit rate Digital Subscriber Line — сверхвысокоскоростная цифровая абонентская линия) — обеспечивает при использовании одной витой пары скорость входящего потока от 12,9 до 52,8 Мбит/с, а исходящего — от 1,5 до 2,3 Мбит/с. Главный недостаток VDSL — малая дальность связи, не превышающая 1,5 км, поэтому для достижения заявленных скоростей требуются концентраторы абонентской линии (ONU — оптических сетевых блоков), которые по оптоволокну соединяют группы абонентов с телефонной станцией. В принципе VDSL можно считать экономически оправданной альтернативой более дорогостоящей оптоволоконной выделенной линии, но массовому пользователю она до сих пор недоступна.

    Чтобы добавить толику позитива в наше пессимистичное повествование, упомяну о том, что в начале 2003 года были приняты стандарты ADSL второго поколения — ADSL2. Среди их самых больших достижений — возможность программного изменения объёма служебной информации в передаваемых пакетах в диапазоне от 2 до 32 Кбит/с, что особенно актуально на линиях большой протяжённости, где полоса пропускания сужается до 128 Кбит/с. Максимальная пропускная способность канала выросла до 12 Мбит/с для входящего трафика, а благодаря возможности передавать ADSL-данные в «голосовой» полосе максимальная скорость исходящего трафика повысилась почти до 900 Кбит/с. Первое оборудование для ADSL2 должно вот-вот появиться на рынке, а на очереди уже внедрение технологии ADSL2+, стандартом на которую предусмотрена скорость входящего трафика до 25 Мбит/с при дальности связи 1,5 км. Такая высокая скорость достигается благодаря повышению верхней границы рабочей частотной области с 1,1 до 2,2 МГц, однако с ростом протяжённости линии скорость связи, разумеется, падает до более привычных значений.

    Конечно, асимметричное подключение подходит далеко не всем: к примеру, для компании, открывшей своим клиентам доступ к каталогу, размещённому на внутреннем сервере, требуется большая скорость именно исходящего трафика. В этом случае можно использовать более дорогостоящую симметричную технологию SDSL (Symmetric Digital Subscriber Line — симметричная цифровая абонентская линия), которая обеспечивает максимальную скорость доступа до 2,048 Мбит/с (в зависимости от расстояния до узла связи и качества линии) и дальность соединения до 6 км. Более прогрессивная модификация симметричной линии — HDSL (High-Rate Digital Subscriber Line — высокоскоростная цифровая абонентская линия), позволяющая добиться скорости 1,544 Мбит/с в обоих направлениях. При этом для HDSL, в отличие от ADSL, необходимы уже две витые пары, но дальность связи ограничена 1,5 км, а требования к качеству кабельной системы существенно выше. Зато отказоустойчивость HDSL повышается за счёт использования двух витых пар: при неполадках в одной из них связь не прерывается, просто скорость доступа падает вдвое.

    К сожалению, несмотря на существование отраслевого стандарта HDSL, несовместимость HDSL-оборудования различных производителей стала притчей во языцех. Кроме того, неудачная схема распределения частотного диапазона не позволяла одновременно передавать по двум (!) витым парам данные и голосовой сигнал. Решить эти проблемы был призван стандарт G.921.2 (G.SHDSL), принятый Международным союзом электросвязи в феврале 2001 года. При сохранении всех достоинств HDSL полоса пропускания канала SHDSL при работе с одной витой парой была расширена до 2,3 Мбит/с. Кроме того, была обеспечена максимальная совместимость с широко распространённой технологией ASDL. Возможность симметричного подключения по одной витой паре — одно из главных достоинств SHDSL, при этом коммутаторы и модемы стали доступны по цене маленьким компаниям и даже некоторым индивидуальным пользователям.

    Общего недостатка всех систем на основе телефонных линий — повышенной чувствительности к электромагнитным помехам — лишены решения на базе сетей кабельного телевидения (CATV — Community Antenna TeleVision — абонентского телевещания). Кабельное ТВ широко распространено в странах Северной Америки, где эти сети с успехом используются для широкополосного доступа в Интернет. Крупные российские города также имеют системы кабельного телевидения, поэтому несколько слов об особенностях этого типа подключения. Максимальная скорость получения данных по кабельному модему — 36 Мбит/с, однако чисто технически невозможно выделить каждому подключённому абоненту индивидуальную частоту несущей, поэтому здесь применяется технология мультиплексирования с временным уплотнением, из-за которой реальная скорость значительно меньше теоретической, причём она меняется в зависимости от числа подключённых абонентов. Более того, поскольку сеть кабельного телевидения рассчитана на одностороннюю передачу данных от провайдера к абоненту, то для передачи исходящего трафика необходимо иметь, например, низкоскоростное коммутируемое подключение. Технология HFC (Hybrid Fiber Coax — гибридная оптоволоконно-коаксиальная сиcтема) обеспечивает двухстороннюю связь по каналам кабельного ТВ, однако для её реализации требуется практически полная замена действующих кабельных систем и усилителей. Впрочем, несмотря ни на что, крупные негосударственные операторы связи, например «МТУ-Информ», проявляют интерес к предоставлению широкополосного доступа в Интернет по сетям кабельного телевидения, а «Кoмкор-ТВ» уже обеспечивает таким сервисом несколько московских микрорайонов.

    Домовые сети — куда более дешёвая и поэтому распространённая альтернатива скоростным кабельным сетям. Если ещё года два назад домовые сети в России представляли собой полулегальные предприятия, основанные на подключении к одному выделенному каналу десятков и даже сотен абонентов, то сегодня государство пытается взять такие сети под свой контроль. Лучше всего это получается в Москве, где построена соответствующая инфраструктура: Московская волоконно-оптическая сеть (МВОС) имеет более десяти тысяч кабельных линий, а порядком устаревшие кабельные телевизионные сети «Мостелекома» проложены почти во всех домах города. Кроме того, домовые сети контролируются и крупными негосударственными компаниями (к примеру, «МТУ-Интел» и «РМ-телеком»), располагающими собственными магистральными линиями связи или предоставляющими услуги радиодоступа.

    Как правило, домовые сети представляют собой обычную 10— или 100-мегабитную локальную сеть Ethernet, тем или иным способом подключённую к провайдеру. Соответственно скорость передачи данных зависит как от канала, так и от количества «сидящих» на нем клиентов. Крупные провайдеры, имеющие собственные магистральные линии, создают в каждом доме микрорайона узлы доступа на основе маршрутизаторов, которые подключаются к сети оптоволоконными каналами с пропускной способностью от 256 Kбит/с до 2 Мбит/с. Безусловно, эти скорости не позволяют многочисленным подписчикам одновременно пользоваться современными мультимедийными сетевыми сервисами, однако такие сети имеют право на жизнь в качестве недорогой альтернативы модемному коммутируемому соединению. Но, увы, широкополосным доступом такое решение не назовёшь.

    Спутниковые системы доступа в Интернет — чрезвычайно перспективная технология, однако, опять же, её распространение ограничивается рядом факторов. Во-первых, полноценный симметричный спутниковый доступ пока чрезвычайно дорог даже для крупных организаций. Во-вторых, асимметричный доступ, при котором исходящий трафик передаётся через низкоскоростное, в том числе и коммутируемое соединение, не всегда экономически оправдан, особенно на фоне снижения цен на технологии ADSL и SHDSL. Операторы спутникового доступа предлагают различные типы подключения, которые предусматривают скорость входящего трафика от 64 Кбит/с (для индивидуальных клиентов) до 55 Мбит/с (для корпоративных клиентов). Как правило, спутниковый доступ имеет смысл использовать там, где принципиально невозможно кабельное подключение либо где необходим канал с очень высокой пропускной способностью.

    Глава 3.

    «Последний дюйм»

    Технологии организации «последнего дюйма» принципиально не слишком отличаются от рассмотренных выше решений: в основном это все те же «обходные» пути. К сожалению, для подавляющего большинства домашних пользователей «последний дюйм» пока выглядит как медная пара — обычный телефонный провод, используемый для коммутируемого подключения. При таком подключении даже по Москве средняя скорость входящего трафика не превышает 33 Кбит/с. В новостройках уже на этапе проектирования предусматриваются кабельные системы, подключаемые, как правило, к оптоволоконным каналам провайдера. В зданиях, не оснащённых кабельной разводкой, используются Ethernet-вариации на тему xDSL (в виде HomePNA) c доступом по телефонной проводке или по радиотрансляционной сети, технологии доступа через кабельное телевидение, по электросети, либо беспроводный радиодоступ на основе технологий Wi-Fi.

    Стандартом HomePNA 2.0 (Home Phoneline Networking Alliance — Союз производителей оборудования для передачи данных по телефонным сетям) установлена скорость передачи данных до 10 Мбит/с при использовании частоты около 10 МГц. Этого уже хватает для передачи видео среднего качества, но совершенно недостаточно для видеоконференций в реальном времени. В стандарте HomePNA 3.0 планируется увеличить скорость доступа до 100 Мбит/с, что сопоставимо с обычными локальными сетями 100 Ethernet. При этом никакой дополнительной разводки не требуется, нужно лишь установить специальные сетевые карты и коммутатор. Аналогичную технологию на основе HomePNA 2.0 продвигает на рынке Московская городская радиотрансляционная сеть (через Центральный телеграф), однако здесь используется проводная радиосеть, которая, в отличие от телефонной проводки, имеется в каждой квартире.

    Интересное решение — передача информации через электропроводку. Технология PLC (PowerLine Communications — связь через электропроводку) предусматривает установку на местной подстанции специального оборудования, соединённого с сетями IP. Полезный сигнал абонент может выделить при помощи адаптера, подключаемого в обычную розетку, при этом пропускная способность сети достигает 14 Мбит/с. К сожалению, пока отсутствует стандарт подключения по PLC многоквартирных зданий: существующий американский стандарт HomePlug 1.0 не допускает подключения к одному трансформатору более 16 узлов-розеток. Кроме того, для передачи данных требуется сложный алгоритм модуляции, поскольку характеристики линии (затухание, искажения, уровень шума) сильно зависят от энергопотребления. Тем не менее, если для европейских стран PLC — скорее экзотика, в США на основе этой технологии строятся целые системы «умных домов», в которых по электросети передаются команды самой разной бытовой технике.

    Одно из наиболее оптимальных и красивых решений проблемы «последнего дюйма» — использование беспроводного радиодоступа, для которого не нужны ни кабель, ни сложные алгоритмы модуляции сигнала. Базовый стандарт беспроводных локальных сетей (Wi-Fi) IEEE 802.11 был разработан ещё в 1997 году, а самый распространённый в настоящее время IEEE 802.11b — в 1999 году. Оборудование стандарта 802.11b работает на частоте 2,4 ГГц и обеспечивает передачу данных со скоростью до 11 Мбит/с (в среднем — около 6 Мбит/с) на расстоянии до 300 метров. Более совершённый стандарт IEEE 802.11a предусматривает работу в частотном диапазоне 5 ГГц, а скорость передачи данных на расстоянии до 100 метров может достигать 54 Мбит/с. К сожалению, эти стандарты несовместимы друг с другом, а новый стандарт IEEE 802.11g (частотный диапазон 2,4 ГГц, максимальная пропускная способность — 54 Мбит/с) обратно совместим только с IEEE 802.11b. Интересно, что один из крупнейших производителей телекоммуникационного оборудования, компания Conexant, комплектует свои чипсеты для кабельных и xDSL-моде-мов контроллерами Wi-Fi фирмы Intersil, что вообще позволяет снять вопрос о базовой станции: достаточно иметь карточку доступа Wi-Fi в компьютере — и вы в Интернете. Кстати, технология Intel Centrino для ноутбуков нового поколения в обязательном порядке предусматривает установку в компьютер чипа Wi-Fi.

    Глава 4.

    Воздушные Замки

    Наблюдать со стороны за тем, как развиваются события, занятие не всегда полезное, но неизменно увлекательное. В зависимости от предполагаемой значимости действа меняется и число участников, и, тем более, болельщиков, и просто зевак, а уж когда дело доходит до евангелистов и проповедников, становится ясно, что происходит нечто незаурядное.

    Появление первых продуктов нового беспроводного стандарта передачи данных, 802.11a, стало, пожалуй, одним из наиболее заметных (и незаурядных) событий прошлого года.

    Впрочем, «новый» — понятие относительное, и слово это, если быть точным, относится здесь скорее не к стандарту, а к продуктам, его реализующим. Ведь спецификация.11a была принята в далёком уже 1999 году, и принятие её прошло тогда практически незамеченным. Она хоть и обещала, в сравнении с 802.11b (далее термин Wi-Fi, обозначающий устройства стандарта 802.11b, сертифицированные консорциумом WECA), впятеро большую скорость данных — до 54 Мбит/с (против максимальных для.11b 11 Мбит/с), но ценой несопоставимых вычислительных затрат и использования нового, пятигигагерцового частотного диапазона.

    В силу перечисленных факторов, 802.11a (по аналогии с Wi-Fi, устройства этого стандарта, сертифицированные WECA, получили обозначение Wi-Fi5) засиделся на старте: основные силы были брошены на освоение и продвижение более привычного 802.11b, который стремительно, по сравнению с HomeRF и Bluetooth, набирал очки весь прошлый год.

    HomeRF, скорее всего, через некоторое время просто сойдёт со сцены — в силу отказа фирмы Intel от поддержки этого стандарта и его несовместимости с Wi-Fi (HomeRF и Bluetooth используют модуляцию со скачками по частоте [FHSS], а Wi-Fi — с размазыванием по спектру путём умножения на кодовую последовательность [DSSS]). А вот после того, как рабочая группа 802.15 по персональным сетям (Personal Area Network, PAN) комитета IEEE, приняла спецификацию, оговаривающую порядок совместной работы в эфире технологий Bluetooth и Wi-Fi (и освобождение перекрывающихся диапазонов частот), можно было бы предположить, что оба стандарта будут сосуществовать долго и счастливо. Добавим сюда и общее падение цен, которое делает затраты на инсталляцию Wi-Fi-сетей сравнимыми с расходами на СКС.

    В общем, дела для Wi-Fi складывались бы как нельзя лучше, если б не появление ещё более высокоскоростного беспроводного стандарта. Пятикратный перевес в скорости передачи данных при цене, сопоставимой с оборудованием предыдущего стандарта, — факт сам по себе достаточно примечательный, чтобы привлечь внимание к новой технологии.

    Но её проповедники на этом не останавливаются и пускают в ход заведомо ложные или, выражаясь мягче, не совсем честные аргументы. Например, сравнивая с Wi-Fi, утверждают, что последняя допускает использование лишь трех неперекрывающихся частотных диапазонов — в отличие от Wi-Fi5, у которой таких диапазонов двенадцать, и тут же делают выводы, что у Wi-Fi могут возникнуть трудности с частотным планированием, тогда как у Wi-Fi5, наоборот, все просто замечательно.

    Так вот, неперекрывающихся диапазонов у Wi-Fi действительно всего лишь три, зато перекрывающихся — аж тринадцать. Перекрытие рабочих диапазонов становится возможным вследствие широкополосных принципов передачи данных в 802.11 и корреляционных методов приёма. В зависимости от национальных особенностей регулирования частотного спектра число диапазонов, правда, меняется: так, например, в США их 11, а в России — столько, сколько сочтёт нужным выделить местный Госсвязьнадзор.

    А у Wi-Fi5, наоборот, три поддиапазона, с максимальными мощностями излучения 10, 50 и 200 мВт и четырьмя рабочими частотами в каждом из них (итого, действительно, двенадцать).

    В зависимости от мощности передатчика, очевидно, будет меняться и радиус соты. Соответственно, частотное планирование может превратиться в запутанную и неочевидную задачу, при решении которой не обойтись без специализированного ПО. А может быть, и наоборот, позволит размещать соты с большей мощностью в местах с наименьшей плотностью абонентов. Притом оставив, при регулярном покрытии, лишь четыре доступных частотных диапазона.

    Далее: признавая меньшую дальность нового стандарта, его апологеты тут же пускаются во все тяжкие: да, на открытом пространстве дальность передачи будет меньше почти в два раза, но зато в реальных условиях, в помещениях, по расчётам наших теоретиков, разницы не будет — ну или почти не будет.

    Меньшая дальность стандарта обусловлена тем, что используемый метод модуляции OFDM (Orthogonal Frequency Division Multiplex — модуляция с ортогональным разделением каналов по частоте) делит рабочую полосу частот (20 МГц) на 52 канала передачи данных и, в свою очередь, использует в каждом из них модуляцию QAM, как известно, далеко не самую эффективную по соотношению сигнал/шум, и вдобавок проигрывает в мощности излучения. Свою лепту вносят и особенности распространения радиоволн 5-гигагерцового диапазона. К слову, в отличие от DMT (Discrete Multi Tone), очень похожего метода модуляции, нашедшего применение в стандарте ADSL и использующего в каждом из частотных канальцев оптимальный для фактического соотношения сиг нал/шум метод модуляции и, таким образом, обеспечивающего максимально достижимую скорость передачи данных в заданной полосе частот, OFDM стрижёт всех под одну гребёнку: метод модуляции один на все каналы, и при наличии узкополосных помех приходится либо жертвовать отдельными каналами, либо — во всех, разом, менять метод модуляции и, соответственно, уменьшать общую скорость передачи данных.

    Как бы то ни было, стандарт 802.11a очень благожелательно был встречен рынком, о производстве чипсетов или о планах по их производству уже заявили, по крайней мере, восемь компаний (в то время как чипсеты для Wi-Fi производят лишь три компании — Intersil, Agere и Texas Instruments; хотя не исключено, что список уже не полон), а первые карточки этого стандарта, Harmony 802.11a компании Proxim, были даже отмечены наградой «Best of Show» в номинации беспроводного оборудования на недавней выставке «Comdex».

    Уже в декабре «Гармонии» добрались до Москвы: пара таких карточек, вместе образующих набор FastWireless Networking Kit.

    Несколько слов о карточках. «Гармонии» основаны на чипсете AR5000 компании Atheros Communications и в турборежиме могут использовать сразу два частотных диапазона, обеспечивая двухкратную, в сравнении со стандартом, скорость передачи данных — то есть, в пределе, до 108 Мбит/с. Карточки, входящие в комплект, позволяют строить только одноранговые, ad-hoc-сети.

    Идущий в комплекте с карточками софт содержал драйверы для любых операционных систем, за исключением Windows XP. Попытка установить ПО через программу инсталляции (setup.exe) под Windows XP закончилась неудачей. Но тем не менее, драйверы были успешно «скушаны» этой операционной системой через процедуру установки нового оборудования, правда, с некоторыми странностями. Так, я некоторое время с удовольствием наблюдал забавную картину: по неработающему беспроводному интерфейсу (Wireless connection unavailable) со скоростью 1,9 Мбайт/с бегали данные. Причём эта скорость обеспечивалась, даже несмотря на высокие потери в канале (доходящие до 10-25 %) и работу «планировщика качества обслуживания» (QoS Sheduler). И ещё одна загадка: после отключения планировщика потерь пакетов стало значительно меньше.

    В дальнейшем, во избежание таких вот непонятностей, эксперименты на ноутбуке проводились под Windows 98, для определения скорости передачи данных использовался протокол FTP и установленный на десктопе FTP-сервер.

    Максимальная достигнутая скорость — 2,3 Мбайт/с — на расстояниях до шести метров (или почти 20 Мбит/с — вчетверо больше, чем у Wi-Fi). Правда, в режиме Turbo скорость увеличилась, к сожалению, не в два раза, — до 3,3 Мбайт/с, или 26,4 Мбит/с! Однако увеличение скорости передачи данных почему-то привело к потере чувствительности. Либо не справляется математика и переходит на более простые алгоритмы модуляции, либо одно из двух…

    А теперь о странностях, позволяющих предположить некоторую «сырость» софта, входящего в комплект поставки. Скорость передачи данных, отображаемая на встроенном индикаторе, менялась в очень широких пределах — до 50 процентов от среднего значения, причём от отсчёта к отсчёту, перманентно. Создавалось ощущение, что драйвер никак не может определиться с выбором оптимальной скорости, хотя видимых источников излучения этого диапазона в квартире обнаружено не было, да и не могло их быть. Разве что шальной радар с расположенного неподалёку «Внукова» или ЗРК СС-300…

    Ещё один минус: после потери связи, вызванной разнесением адаптеров на относительно большое расстояние, скорость передачи данных не вернулась к прежним значениям, а встроенный индикатор застыл на отметке 24/12 Мбит/с. Вывести карточки из клинча не удалось даже совмещением антенн обоих адаптеров!

    И наконец, капитальная стена толщиной около 40 см (по опыту, весьма и весьма твёрдая) оказалась для 802.11a и вовсе непреодолимым препятствием…

    Поэтому в небольшой городской квартире, изобилующей стенками и капиталками, связь возможна в пределах максимум десяти-пятнадцати метров, при этом существуют зоны, где связь отсутствует вовсе.

    Впрочем, сложившаяся ситуация могла объясняться и сыростью драйверов, и неудачным расположением одной из карточек — десктоп по квартире особенно не подвигаешь, с точкой доступа свободы было бы значительно больше.

    А вот оборудование стандарта Wi-Fi, выпестованное Agere, на удивление, показывало чудеса стабильности: при фиксированном положении приёмника и передатчика скорость передачи данных менялась лишь в третьем знаке, в пределах нескольких процентов. Максимальная дальность передачи, в отсутствие прямой видимости и капитальных стен, достигала 30 метров. Капитальная стена, ставшая для «Гармоний» непреодолимым препятствием, осталась почти незамеченной — скорость передачи данных по FTP упала с максимальных для комплекта 595 Кбайт/с до 590 Кбайт/с! Видимо, радиоволны нашли более короткую дорогу.

    Диапазон частот, ГГц = Макс. вых. мощность, мВт

    5,15-5,25 = 10

    5,25-5,35 = 50

    5,725-5,825 = 200 

    Гораздо нагляднее и интерфейс прикладных программ, предоставляющий информацию и о соотношении сигнал/шум на обоих концах линии, и о запасе по мощности, и о скорости передачи данных.








    Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Наверх