• 4.1. Принцип целостности моделирования
  • 4.2. Модель целенаправленного процесса деятельности
  • 4.3. Общая модель целостного процесса деятельности
  • 4.4. Общая математическая модель целостной и целой системы
  • 4.5. Модель жизненного цикла целого
  • 4.6. Модель грамотности и доступности
  • 4.7. Модель вложенности сфер деятельности
  • Глава 4. Моделирование целого

    4.1. Принцип целостности моделирования

    • Сформулируем Принцип целостности моделирования с использованием ранее полученных результатов, представленных в разделе 2.3 и в главе 3.

    В разделе 2.3 мы уже определили, что модель – это совокупность способов и/или средств обеспечения взаимодействия между внешней средой, представленной изучаемым объектом, и внутренней средой изучающего, представляемой в виде комплекса его знаний о внешней среде. Кроме этого установлено также, что общий Принцип моделирования можно сформулировать в виде: реальный моделируемый объект и используемая модель должны удовлетворять одному набору аксиом. В общем виде Принцип целостности моделирования был сформулирован нами в следующем виде: для формирования и осуществления целого совокупность «моделируемое целое и моделирующее целое» необходимо представлять одной совокупностью аксиом построения целостного целого, справедливой также и для каждого из обоих целых совокупности.

    Для развития этих результатов используем аксиомы и основную теорему Принципа целостности, рассмотренного нами в главе 3, которые для процесса целостного моделирования можно сформулировать следующим образом.

    Аксиома 1 «общей модели целого»: для формирования и реализации целостного моделирования необходима общая модель целого в виде целостной и целой системы, удовлетворяющей условиям постулатов целого и целостности 3, 5, 8.

    Целостной и целой системе присущ баланс действия факторов целого и баланс действия факторов целостности (постулат 3). В целостной и целой системе содержится ядро, формирующее направленность целого на собственное выживание, сохранение и развитие, – ядро целого (постулат 5). Выполняются также все условия, выражаемые следствиями постулата 5 целостного метода системной технологии.

    Согласно постулату 8 об общей модели процесса и структуры целого: для формирования и реализации целостного моделирования формирование и реализацию процесса моделирования необходимо осуществлять с помощью общей модели целой и целостной системы для подобных процессов моделирования. Для формирования и реализации целостного моделирования формирование и реализацию структуры моделирования необходимо осуществлять с помощью общей модели целой и целостной системы для подобных структур моделирования.

    В разделе 4.3 мы рассмотрим доказательство изоморфизма структур и процессов деятельности, относящиеся и к моделированию.

    Аксиома 2 «необходимости объекта моделирования»: для формирования и реализации целостного моделирования необходим объект моделирования. Объект моделирования, названный нами и как реальный моделируемый объект, содержит в себе моделируемое целое, т.е. ту свою составляющую, которую мы считаем возможным выделить и описать как целостное целое.

    Аксиома 3 «общей модели объекта моделирования»: для формирования и реализации целостного моделирования формирование и реализацию описания объекта моделирования необходимо осуществлять в соответствии с общей моделью целого для подобных объектов моделирования в виде целостной и целой системы.

    При применении данного утверждения при осуществлении целостного моделирования описание реального моделируемого объекта составляется из двух описаний. Одно из описаний удовлетворяет условиям выбранной общей модели целого для подобных объектов моделирования в виде целостной и целой системы, другое – нет. Далее определяем, какое из этих описаний более адекватно описывает объект моделирования. Положим, что в соответствии с выбранными критериями идентичности, выбранная нами общая модель целого более пригодна для моделирования данного объекта. Тогда другое описание мы используем для внесения поправок в решения, получаемые с помощью модели целого. Если мы приходим к выводу, что выбранная нами общая модель целого не пригодна для моделирования данного объекта, переходим к выбору другой модели объекта.

    Аксиома 4 «необходимости субъекта моделирования»: для формирования и реализации целостного моделирования необходим субъект моделирования.

    Субъект моделирования ранее назван нами также изучающим, условия взаимодействия которого с изучаемым объектом определены следующим утверждением, а также сформулированной далее основной теоремой Принципа целостности моделирования.

    Аксиома 5 «общей модели субъекта моделирования»: для формирования и реализации целостного моделирования формирование и реализацию субъекта моделирования необходимо осуществлять в соответствии с общей моделью целого для подобных субъектов моделирования в виде целостной и целой системы.

    Субъект моделирования – «изучающий», может представлять собой специалиста, группу специалистов или человеко-машинную систему. Требования, предъявляемые к изучающему можно сформулировать на основе Принципа целостности мышления и практики специалиста в виде: для формирования и реализации целостного моделирования формирование и реализацию мышления и практики субъекта моделирования необходимо осуществлять в соответствии с общей моделью целого для подобных субъектов моделирования в виде системной технологии.

    Аксиома 6 «необходимости результата моделирования»: для формирования и реализации целостного моделирования необходим результат моделирования в виде целостной и целой модели объекта моделирования.

    Аксиома 7 «общей модели результата моделирования»: для формирования и реализации целостного моделирования формирование и реализацию результата деятельности необходимо осуществлять в соответствии с общей моделью целого для подобных объектов моделирования в виде целостной и целой системы.

    Аксиома 8 «необходимости триады деятельности»: для формирования и реализации целостного моделирования необходима триада «объект-субъект-результат» моделирования.

    Теорема целостности «об общей модели триады моделирования»: для формирования и реализации целостного моделирования формирование и реализацию триады «объект-субъект-результат» моделирования необходимо осуществлять в соответствии с общей моделью целого для подобных триад моделирования в виде целостной и целой системы.

    Справедливость данной теоремы обоснована аксиомами 1–8.

    Для каждого случая применения Принципа целостности моделирования необходимо: описать конкретную совокупность проблемы, миссии, стратегии, целей моделируемого объекта; сформулировать, на основе данного общего Принципа целостности моделирования, аксиомы и основную теорему Принципа целостности моделирования для данной совокупности проблемы, миссии, стратегии, целей моделируемого объекта; выбрать типовой регламент взаимосвязанного применения условий Принципа целостности моделирования; выбор типового регламента моделирования осуществляется с применением процедур метода системной технологии или метода системной философии; составить свой, присущий данной совокупности проблемы, миссии, стратегии, целей моделируемого объекта, регламент применения условий данного Принципа целостности моделирования. Составление и использование регламента применения Принципа целостности моделирования позволяет создать целостное единство всех технологий моделирования, реализуемых частями моделирующей триады для конкретной совокупности проблемы, миссии, стратегии, целей моделируемого объекта. При этом одной из важнейших задач является задача развития знаний, умений и навыков целостного (системного, в частном случае) мышления и практики субъекта моделирования.

    4.2. Модель целенаправленного процесса деятельности

    Здесь рассматривается общая модель целенаправленного процесса деятельности, предложенная и описанная автором для различных применений[107] .

    Рассмотрим процесс актуализации и разрешения проблемы, описанный в общем случае в главе 1, для построения общей целостной и целой модели целенаправленного процесса деятельности.

    В соответствии с принятыми определениями существует некоторая универсальная среда деятельности М, включающая в себя социальную, природную, информационную, другие среды, объекты деятельности, проблемы выживания, сохранения и развития.

    Сформулируем следующие исходные утверждения:

    Утверждение 4.2.1: 4.2.1а – в общем случае, если в среде М актуализируется («возникает») некоторая проблема, это означает, что существует некоторый носитель проблемы, которому необходим определенный результат (продукт, изделие) для ее разрешения; 4.2.1б – носитель проблемы является потребителем указанного результата, что необходимо ему для разрешения актуализировавшейся проблемы. В качестве потребляемого результата можно рассматривать знание, товар, услугу; 4.2.1в – результат должен отвечать определенным требованиям к качеству и количеству для удовлетворительного разрешения актуализировавшейся проблемы носителем проблемы на обозримый период.

    Утверждение 4.2.2: 4.2.2а – в общем случае методом решения какой-либо актуализировавшейся в среде М проблемы является производство средой М соответствующего результата и потребление данного результата носителем проблемы; 4.2.2б – для производства результата с качественными и количественными характеристиками, необходимыми носителю проблемы для разрешения актуализировавшейся проблемы, среда М выделяет некоторый объект деятельности, который затем преобразуется и входит в триаду «объект-субъект-результат».

    Как правило, однократного производства результата недостаточно для разрешения проблемы. Проблема требует постоянного, систематического ее разрешения. Так, проблема голода не может быть решена однократным потреблением пищи или производством зерна в течение одного сельскохозяйственного года. Проблема развития интеллекта нации, в свою очередь, не может быть решена однократным производством специалистов системой высшего профессионального образования. Научная проблема выяснения происхождения человека не может быть решена с помощью одной только теории эволюции по Дарвину. Другими словами, для разрешения проблемы необходимо регулярное производство результата (напр., знания, товара, услуги) заданного качества и количества и его потребление носителем проблемы с соответствующим качеством и в необходимом количестве.

    Надо отметить и еще одно существенное обстоятельство. Обоснованные нами утверждения показывают, что для разрешения проблем выживания, сохранения и развития необходимы производственные процессы – целенаправленные процессы производства знаний, товаров, услуг. Известны также рост масштабов и усложнение проблем выживания, сохранения и развития человека. Следовательно, необходимо и соответствующее, а может быть, и опережающее развитие производства все более и более совершенных результатов, необходимых для разрешения проблем. И для того чтобы соответствующие процессы производства могли решать задачи производства все более сложных результатов во все больших масштабах, существует только один путь – индустриализация. Другими словами, обоснованные нами утверждения вновь подтвердили объективность действия открытых нами Законов индустриализации, технологизации и машинизации деятельности в качестве основных Законов развития деятельности. И рассматриваемая нами системная технология это общая модель любой деятельности, которая может рассматриваться и как общая теория технологий деятельности. Она может рассматриваться и как общая теория систем, и как общая теория моделирования. Системная технология уже рассматривалась нами в качестве общей модели мышления и практики специалиста.

    Продолжим формирование модели целенаправленного процесса деятельности. Из изложенного до этого следует, что носителем проблемы задаются определенные критерии оценки результата, т.е. критерии оценки количества и качества, которым должен соответствовать результат (изделие, продукт), необходимый для разрешения актуализировавшейся проблемы. Далее надо отметить, что в среде деятельности присутствует фактор ограниченности и редкости ресурсов. Кроме этого, существуют и ограничения на цели деятельности, напр., моральные, этические и другие. В свою очередь и на методы достижения цели накладываются количественные и качественные ограничения.

    • Можно считать обоснованным следующее утверждение 4.2.3: 4.2.3а – для разрешения какой-либо проблемы, актуализировавшейся в среде, необходим соответствующий результат деятельности среды; 4.2.3б – целью процесса решения какой-либо проблемы, актуализировавшейся в среде, является удовлетворительное обеспечение значения заранее заданного критерия оценки соответствующего результата; 4.2.3в – методом достижения цели процесса решения какой-либо проблемы, актуализировавшейся в среде, является регулярное производство соответствующего результата; 4.2.3г – для формирования цели и метода процесса решения какой-либо проблемы необходимо изучение и выбор состава ресурсов среды; 4.2.3д – для удовлетворительного разрешения актуализировавшейся проблемы необходимо установление обоснованных ограничений при выборе цели, ресурсов, метода; 4.2.3е – каждый из процессов выбора цели, метода, ресурсов или ограничений является процессом принятия решения в отношении цели, метода, ресурсов или ограничений; 4.2.3ж – целенаправленный процесс деятельности состоит из циклических процессов согласованного принятия решений в отношении цели, метода, ресурсов, ограничений.

    Основные стадии целостного процесса принятия решения – анализ, исследование, управление и другие, будут нами рассмотрены в следующем разделе настоящей главы. Пока что еще раз отметим, что целенаправленный, в смысле удовлетворительного достижения значения критерия оценки результата, необходимого для разрешения проблемы, процесс деятельности по производству результата содержит в себе комплекс процессов принятия решений о критериях, цели, методе, ресурсах, ограничениях.

    Здесь мы рассмотрели построение общей модели целенаправленного процесса деятельности на примере процесса производства результата для разрешения некоторой актуализировавшейся в среде проблемы.

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) разработка комплекса утверждений, которым должен удовлетворять целенаправленный процесс потребления носителем проблемы результата, необходимого для разрешения проблемы;

    2) разработка условий целостного взаимодействия целенаправленных процессов производства и потребления результата, необходимого для разрешения проблемы.

    • Условием цельности рассматриваемого процесса является следование цели удовлетворительного обеспечения значения критерия оценки результата, необходимого для разрешения проблемы.

    Далее сформулируем

    утверждение 4.2.4: 4.2.4а – для согласованного принятия решений в целенаправленном процессе деятельности необходима координация принятия решений в отношении цели, метода, ресурсов, ограничений и оценка реализации каждой совокупности согласованных решений; 4.2.4б – для координации принятия решений в отношении цели, метода, ресурсов, ограничений необходима неоднократная реализация и оценка вариантов согласованного принятия решений в отношении цели, метода, ресурсов, ограничений.

    Этим утверждением устанавливаются условия соответствия постулатам целостности целенаправленного процесса деятельности.

    Итак, можно описать общую модель целенаправленного процесса деятельности, как состоящую из семи взаимосвязанных процессов выбора: 1) формулирование цели; 2) определение наличных ресурсов; 3) установление ограничений на цели, ресурсы, методы; 4) нахождение методов использования ресурсов для достижения цели при заданных ограничениях; 5) применение найденных методов для достижения цели; 6) оценка эффективности достижения цели и выбор данного метода, если достигнута удовлетворительная оценка. Если оценка эффективности неудовлетворительна, то происходит переход к этапу 7) координация осуществления (повторения) процессов 1–4, 5,6.

    • Следующие комплексы целостных и цельных моделей нужно тогда использовать для создания целостной и цельной модели целенаправленного процесса деятельности по производству необходимого результата:

    1) модели цели деятельности. Данные модели описывают все цели деятельности, как цели удовлетворительного обеспечения каждого возможного критерия оценки результата (совокупностей этих критериев), необходимого для разрешения данной, актуализирующейся в среде, проблемы;

    2) модели ресурсов деятельности. Данные модели описывают количественные и качественные показатели всех ресурсов, доступных для разрешения данной, актуализирующейся в среде, проблемы;

    3) модели методов использования ресурсов для достижения цели деятельности. Данные модели описывают все методы регулярного производства результата, потребление которого приводит к решению данной, актуализирующейся в среде, проблемы;

    4) модели ограничений производства. Данные модели описывают обоснованные ограничения на цели, ресурсы, методы и их взаимосвязи для возможных комбинаций целей, ресурсов, методов для удовлетворительного разрешения данной, актуализирующейся в среде, проблемы;

    5) модели реализации найденных методов использования ресурсов для достижения цели деятельности при заданных ограничениях. Данные модели описывают возможные сочетания «методы, цели, ресурсы, ограничения», использование которых возможно для удовлетворительного разрешения данной, актуализирующейся в среде, проблемы;

    6) модели оценки эффективности данного варианта сочетания «методы, цели, ресурсы, ограничения», использование которого возможно для удовлетворительного разрешения данной, актуализирующейся в среде, проблемы. Данные модели описывают возможные методы оценки эффективности в смысле принятых критериев оценки результата деятельности, необходимого для разрешения данной, актуализирующейся в среде, проблемы. Кроме того, в этот комплекс моделей входят также модели возможных вариантов решений для различных вариантов оценки;

    7) модели координации осуществления процессов 1–4, 5,6. Данные модели представляют собой модели согласованного принятия решений по выбору определенного варианта сочетания «методы, цели, ресурсы, ограничения», использование которого возможно для удовлетворительного разрешения данной, актуализирующейся в среде, проблемы (координация совокупности процессов 1–4). В этот комплекс моделей входят также модели координации адекватности реализации выбранного варианта сочетания «методы, цели, ресурсы, ограничения» (координация процесса 5), а также модели принятия решений по результатам оценки (координация процесса 6).

    Формирование данного комплекса моделей необходимо для обеспечения целостности и цельности целенаправленного процесса целостной деятельности.

    Общую целостную и целую модель целенаправленного процесса деятельности можно описать, с учетом применения данных комплексов моделей, как состоящую из семи взаимосвязанных процессов выбора, более подробно следующим образом:

    1) Цели. Анализ моделей цели, исследование возможностей их применения, выбор последовательности применения подходящих моделей, выбор формулы цели для разрешения данной, актуализирующейся в среде, проблемы.

    2) Ресурсы. Анализ моделей ресурсов деятельности, исследование возможностей их применения, определение последовательности применения подходящих моделей, выбор модели комплекса ресурсов для разрешения данной, актуализирующейся в среде, проблемы.

    3) Ограничения. Анализ моделей ограничений на цели, ресурсы, методы; исследование возможностей их применения, определение последовательности применения подходящих моделей, выбор ограничений на цели, ресурсы, методы для разрешения данной, актуализирующейся в среде, проблемы.

    4) Методы. Анализ моделей методов использования ресурсов для достижения цели деятельности; исследование возможностей их применения, определение последовательности использования подходящих моделей для разрешения данной, актуализирующейся в среде, проблемы; выбор одной из моделей для разрешения данной, актуализирующейся в среде, проблемы.

    5) Применение. Анализ моделей реализации найденных методов использования ресурсов для достижения цели деятельности при заданных ограничениях; исследование возможностей их применения, выбор и применение одной из подходящих моделей для разрешения данной, актуализирующейся в среде, проблемы.

    6) Оценка. Анализ моделей оценки эффективности данного варианта сочетания «методы, цели, ресурсы, ограничения»; исследование возможностей их применения, применение одной из подходящих моделей для оценки эффективности разрешения данной, актуализирующейся в среде, проблемы; подготовка проекта решения о выборе данного варианта сочетания «методы, цели, ресурсы, ограничения», если достигнута удовлетворительная оценка. Если оценка эффективности неудовлетворительна, то происходит переход к процессу 7.

    7) Координация. Анализ моделей координации осуществления процессов 1–4, 5,6; исследование возможностей их применения; применение одной из подходящих моделей для согласованного принятия решений по выбору определенного варианта сочетания «методы, цели, ресурсы, ограничения», использование которого возможно для удовлетворительного разрешения данной, актуализирующейся в среде, проблемы (координация совокупности процессов 1–4); применение одной из подходящих моделей для координации адекватности реализации выбранного варианта сочетания «методы, цели, ресурсы, ограничения» (координация процесса 5); применение одной из подходящих моделей для принятия решения по результатам оценки (координация процесса 6).

    Предложенная целостная и цельная модель целенаправленного процесса деятельности построена как процесс деятельности по производству результата, необходимого для удовлетворительного разрешения некоторой, актуализирующейся в среде, проблемы. По своей сути в данной модели вначале описаны процессы выбора метода, цели, ресурсов, ограничений «по отдельности». Затем данная модель регламентирует процессы выбора сочетания «методы, цели, ресурсы, ограничения». Далее, имеются процессы апробации и оценки, производимые с целью выбора и постоянного применения некоторого приемлемого варианта этого сочетания. Кроме того, имеются процедуры перехода к выбору новой модели сочетания «методы, цели, ресурсы, ограничения».

    Все эти процедуры и взаимодействия между ними, описываемые предлагаемой моделью целенаправленного процесса деятельности, являются общими для любых целенаправленных процессов, так как в большинстве случаев цели этих процессов направлены на получение результатов с заданными свойствами. По этим основаниям можно считать, что рассматриваемая модель является общей моделью целенаправленного процесса деятельности.

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) разработка общей модели целенаправленных процессов деятельности для субъекта деятельности в триаде деятельности;

    2) разработка общей модели процесса непосредственного разрешения проблемы.

    • Условия формирования целостных и цельных моделей цели, ресурсов, ограничений, методов, применения, оценки, координации. Для полного решения этой задачи нужно использовать полученные в первом разделе настоящей главы: определение модели, общий Принцип моделирования, Принцип целостности моделирования, аксиомы и основную теорему Принципа целостности для процесса целостного моделирования, аксиомы целостности – «общей модели целого», «необходимости объекта моделирования», «общей модели объекта моделирования», «необходимости субъекта моделирования», «общей модели субъекта моделирования», «необходимости результата моделирования», «общей модели результата моделирования», «необходимости триады деятельности», Принцип целостности мышления и практики субъекта моделирования, теорему целостности «об общей модели триады моделирования».

    Процесс полного решения данной задачи можно осуществить с помощью компьютера в интерактивном режиме в связи с проведенной нами практически полной формализацией этого процесса.

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) разработка алгоритмов и компьютерных программ применения каждого из условий формирования и использования целостных и цельных моделей цели, ресурсов, ограничений, методов, применения, оценки, координации;

    2) разработка алгоритмов и компьютерных программ формирования и использования целостной и цельной модели целенаправленного процесса деятельности;

    3) разработка комплекса интерактивных процедур практической методики для построения конкретного вида целенаправленного процесса деятельности.

    Для более детального изучения возможностей целостной и цельной модели целенаправленного процесса деятельности предлагается несколько примеров ее применения.

    • Один из примеров применения предложенной здесь модели целенаправленного процесса деятельности – конструирование процесса формирования, принятия и реализации государственных управленческих решений[108] . Государственному служащему как лицу, принимающему решения (государственное лицо, принимающее решения, далее – ГЛПР), необходим научно обоснованный целостный механизм производства и реализации государственных управленческих решений. Рассмотрим для примера отдельные важные аспекты этого механизма.

    Как известно из повседневной практики государственного управления, для осуществления процесса формирования, принятия и реализации решений ГЛПР формирует определенную команду специалистов из числа государственных служащих и неправительственных экспертов и управляет процессами формирования, принятия и реализации государственных решений. Это может быть, например, решение о необходимости разработки определенной государственной программы. Далее это может быть решение о необходимости согласования вариантов разрабатываемой программы с другими государственными органами. На основе результатов согласования необходимо управленческое решение о принятии и утверждении определенного варианта разработанной программы как наилучшего в данных условиях для развития общественного производства. Затем, это могут быть решения по внесению изменений в выбранную и утвержденную программу, направленные на ее оптимальную практическую эффективность.

    Во всех этих случаях существуют два основных вида решений: профессиональное решение команды специалистов, формирующих и согласовывающих варианты программы, представляющих затем эти варианты ГЛПР, а также управленческое решение ГЛПР по выбору единственного варианта программы для ее принятия (согласования, утверждения) и реализации.

    В системе формирования, принятия и реализации государственного управленческого решения можно выделить три основные подсистемы: а) подсистема производства. В нее входят ГЛПР и команда специалистов по формированию, принятию и реализации государственного управленческого решения. Это основная часть системы-объекта производства решения; б) подсистема коммуникаций. В нее входят ГЛПР, команда специалистов и другие ГЛПР и команды специалистов, с которыми необходимо осуществлять коммуникации в процессе производства государственного управленческого решения. Это дополнительная часть системы-объекта производства решения; в) подсистема управления. В нее входят ГЛПР и его аппарат управления процессами формирования, принятия и реализации государственного управленческого решения. Это система-субъект производства решения. В этих подсистемах должны осуществляться целенаправленные процессы формирования, принятия и реализации управленческих решений.

    Целенаправленные процессы производства решения. В подсистеме производства при формировании, принятии и реализации решения ГЛПР и специалисты – основная часть системы-объекта, стоят перед необходимостью выбора одного из нескольких альтернативных вариантов государственного управленческого решения. В большинстве случаев существует возможность последовательной проверки альтернатив для окончательного выбора и реализации государственного управленческого решения в практике. Процесс производства государственных управленческих решений можно представить в виде двухстадийного комплекса целенаправленных процессов деятельности. На первой стадии осуществляется целенаправленный процесс формирования банка возможных управленческих решений, на второй стадии – целенаправленный процесс практического формирования, принятия и реализации государственного управленческого решения.

    Целенаправленный процесс первой стадии можно описать, как состоящий из следующих этапов деятельности:

    1) моделирование комплекса целей. Анализ актуализировавшейся проблемы управления, возможных результатов, производство которых приводит к решению проблемы, а также возможных критериев оценки результата. Составление целостного и цельного комплекса целей достижения удовлетворительных значений данных критериев. На данном этапе процесса описываются все модели цели государственного управленческого решения, достижение которых приводит к разрешению поставленной проблемы;

    2) моделирование комплекса ресурсов, необходимых для разрешения проблемы. На данном этапе описываются количественные и качественные показатели всех ресурсов, которые, во-первых, желательно привлечь для разрешения поставленной проблемы и которые допустимо, во-вторых, использовать при формировании, принятии и реализации данного производства государственных управленческих решений;

    3) моделирование комплекса решений. Этот этап состоит в нахождении возможных альтернативных вариантов государственных управленческих решений, направленных на решение проблемы. В результате формируется комплекс всех возможных государственных управленческих решений, приводящих к регулярному производству результата, потребление которого приводит к решению данной проблемы;

    4) моделирование комплекса ограничений на цели, на альтернативы государственных управленческих решений и на ресурсы для формирования, принятия и реализации государственных управленческих решений. Данные модели описывают обоснованные ограничения на цели, ресурсы, государственные управленческие решения. Кроме того, в этих моделях описываются и взаимосвязи ограничений для тех комбинаций целей, ресурсов, решений, которые приводят к достижению удовлетворительного значения принятого критерия разрешения данной проблемы;

    5) моделирование реализации комплекса решений. Этот этап состоит в построении моделей апробации (компьютерных или иных) комплекса всех возможных альтернатив государственных управленческих решений, составленных на этапе «моделирование комплекса решений» с учетом полученных на предыдущем этапе моделей комплексов ограничений;

    6) моделирование оценки эффективности. Этот этап состоит в построении моделей оценки эффективности каждой из возможных альтернатив государственных управленческих решений, апробация которых предусматривается предыдущим этапом. В результате формируются модели, описывающие возможные методы оценки эффективности (в смысле принятых критериев разрешения данной проблемы) комплекса принятых альтернатив государственных управленческих решений. Кроме того, в этот комплекс моделей входят также модели возможных вариантов решений о приемлемости альтернатив государственных управленческих решений по результатам оценки их потенциальной эффективности;

    7) моделирование координации. Этот этап состоит в построении моделей согласованного принятия решений по выбору вариантов государственного управленческого решения, использование которых приемлемо в смысле достижения удовлетворительного значения принятого критерия разрешения поставленной проблемы (координация процессов 5,6). На этом этапе осуществляется также построение модели координации сочетания «методы, цели, ресурсы, ограничения» для каждого альтернативного государственного управленческого решения (модели координации процессов 1–4).

    В результате осуществления первой стадии процесса подготовки и принятия решения формируется банк альтернатив государственных управленческих решений, приемлемых в смысле удовлетворительного разрешения поставленной проблемы. Этот банк альтернатив можно также считать концептуальной системой государственного управления разрешением данной проблемы.

    Целенаправленный процесс второй стадии – практического формирования, принятия и реализации государственного управленческого решения, можно описать, как состоящий из следующих этапов деятельности:

    1) Цели. Анализ моделей цели, содержащихся в банке альтернатив; исследование возможностей их применения. Выбор последовательности применения подходящих моделей, выбор формулы цели для разрешения данной практической проблемы.

    2) Ресурсы. Анализ моделей ресурсов деятельности, содержащихся в банке альтернатив; исследование возможностей их применения. Определение последовательности применения подходящих моделей, выбор модели комплекса ресурсов для разрешения данной практической проблемы.

    3) Ограничения. Анализ моделей ограничений на цели, ресурсы, методы, содержащихся в банке альтернатив; исследование возможностей их применения. Определение последовательности применения подходящих моделей, выбор ограничений на цели, ресурсы, методы для разрешения данной практической проблемы.

    4) Методы. Анализ моделей государственных управленческих решений, содержащихся в банке альтернатив; исследование возможностей их применения. Определение последовательности использования подходящих моделей для разрешения данной практической проблемы. Выбор одной из моделей государственного управленческого решения для разрешения данной практической проблемы.

    5) Применение. Анализ моделей реализации государственного управленческого решения; исследование возможностей их применения. Выбор и применение одной из подходящих моделей для реализации выбранного на предыдущих этапах 1–4 сочетания «цели, ресурсы, ограничения, решение» для разрешения данной практической проблемы.

    6) Оценка. Анализ моделей оценки эффективности данного варианта сочетания «цели, ресурсы, ограничения, решение», содержащихся в банке альтернатив; исследование возможностей их применения. Применение одной из подходящих моделей для оценки эффективности разрешения данной практической проблемы с помощью данного сочетания «цели, ресурсы, ограничения, решение». Подготовка проекта решения о выборе данного варианта сочетания «цели, ресурсы, ограничения, решение», если достигнута удовлетворительная оценка. Если оценка эффективности неудовлетворительна, то происходит переход к процессу 7.

    7) Координация. Анализ моделей координации осуществления процессов 1–4, 5,6; исследование возможностей их применения. Применение одной из подходящих моделей для согласованного принятия решений по выбору определенного варианта сочетания «цели, ресурсы, ограничения, решения», использование которого возможно для удовлетворительного разрешения данной практической проблемы (координация совокупности процессов 1–4). Применение одной из подходящих моделей для координации адекватности реализации выбранного варианта сочетания «цели, ресурсы, ограничения, решения» (координация процесса 5). Применение одной из подходящих моделей для принятия решения по результатам оценки (координация процесса 6).

    Целенаправленные процессы производства коммуникаций. В подсистеме коммуникаций ГЛПР и команда специалистов – дополнительная часть системы-объекта, при согласовании выбираемого решения с другими ГЛПР и командами специалистов стоят перед необходимостью выбора одной из нескольких альтернатив коммуникаций. В большинстве случаев существует возможность последовательной проверки альтернатив коммуникаций для согласования государственного управленческого решения в практике. Процесс согласования государственных управленческих решений можно также представить в виде двухстадийного комплекса целенаправленных процессов коммуникативной деятельности. На первой стадии осуществляется целенаправленный процесс формирования банка возможных коммуникативных процессов, на второй стадии – целенаправленный процесс практического согласования государственного управленческого решения с учетом особенностей других ГЛПР и команд специалистов.

    Для изучения настоящего раздела предлагается самостоятельно описать двухстадийный комплекс целенаправленных процессов коммуникативной деятельности. При описании необходимо использовать рассмотренную здесь общую целостную и целую модель целенаправленного процесса, а также, в качестве примера, двухстадийную основную модель выбора решения.

    Целенаправленные процессы управления производством решений. В подсистеме управления ГЛПР и его аппарат управления – система-субъект производства решения, осуществляют принятие решений по управлению выбором государственного управленческого решения, согласованием выбираемого решения с другими ГЛПР и командами специалистов. Здесь также есть необходимость выбора одной из нескольких альтернатив управленческих решений. В большинстве случаев существует возможность последовательной проверки альтернатив данных управленческих решений. Процесс управления производством решений можно также представить в виде двухстадийного комплекса целенаправленных процессов управленческой деятельности. На первой стадии осуществляется целенаправленный процесс формирования банка возможных управленческих процессов, на второй стадии – целенаправленный процесс практического управления производством решений.

    Мы приведем здесь упрощенную схему данного двухстадийного процесса, состоящего, как принято при применении предложенной модели целенаправленного процесса деятельности, из первой стадии формирования концептуальной модели банка возможных управленческих ситуаций и решений, и второй стадии – применения на практике для управления производством государственного управленческого решения.

    Целенаправленный процесс первой – концептуальной стадии управления производством решений можно описать, как состоящий из следующих этапов деятельности:

    1) моделирование комплекса целей. Анализ проблемы управления производством решений, миссионерских и собственных целей системы-субъекта производства решений, а также влияния миссионерских и собственных целей на разрешение поставленной проблемы. На данном этапе процесса составляется целостный и цельный комплекс критериев управления совместным влиянием миссионерских и собственных целей на степень разрешения поставленной проблемы;

    2) моделирование комплекса ресурсов, необходимых для управления производством решений. На данном этапе описываются количественные и качественные показатели всех ресурсов, которые, во-первых, желательно привлечь для разрешения поставленной проблемы управления производством решений и которые допустимо, во-вторых, использовать при управлении производством государственных управленческих решений;

    3) моделирование комплекса управления производством решений. Этот этап состоит в нахождении возможных альтернативных вариантов управления производством решений, направленных на решение проблемы. В результате формируется комплекс всех возможных моделей управления производством государственных управленческих решений, приводящих к регулярному производству результата, потребление которого приводит к решению данной проблемы;

    4) моделирование комплекса ограничений на цели, на альтернативы управления производством решений и на ресурсы для управления производством решений. Данные модели описывают обоснованные ограничения на цели, ресурсы управления производством решений и собственно управление производством решений. Кроме того, в этих моделях описываются и взаимосвязи ограничений для тех комбинаций целей, ресурсов и собственно управления производством решений, которые приводят к достижению удовлетворительного значения некоторого принятого критерия качества управления производством решений;

    5) моделирование реализации комплекса решений. Этот этап состоит в построении моделей апробации (компьютерных или иных) комплекса всех возможных альтернатив управления производством решений, составленных на этапе «моделирование комплекса решений» с учетом полученных на предыдущем этапе моделей комплексов ограничений;

    6) моделирование оценки эффективности. Этот этап состоит в построении моделей оценки эффективности каждой из возможных альтернатив управления производством решений, апробация которых предусматривается предыдущим этапом. В результате формируются модели, описывающие возможные методы оценки эффективности (в смысле принятых критериев управления производством решений) комплекса принятых альтернатив управления производством решений. Кроме того, в этот комплекс моделей входят также модели возможных вариантов решений о приемлемости альтернатив управления производством решений по результатам оценки их потенциальной эффективности;

    7) моделирование координации. Этот этап состоит в построении моделей согласованного принятия решений по выбору вариантов управления производством решений, использование которых приемлемо в смысле достижения удовлетворительного значения принятого критерия управления производством решений (координация процессов 5,6). На этом этапе осуществляется также построение модели координации сочетания «методы, цели, ресурсы, ограничения» для каждого альтернативы управления производством решений (модели координации процессов 1–4).

    В результате осуществления первой стадии процесса подготовки и принятия решения формируется банк альтернатив управления производством решений, приемлемых в смысле удовлетворительного разрешения поставленной проблемы. Этот банк альтернатив можно также считать концептуальной системой управления производством государственных управленческих решений.

    Целенаправленный процесс второй стадии – практического управления производством государственного управленческого решения (управления производством решений), можно описать, как состоящий из следующих этапов деятельности:

    1) Цели. Анализ моделей критериев управления совместным влиянием миссионерских и собственных целей, содержащихся в банке альтернатив; исследование возможностей их применения. Выбор последовательности применения подходящих моделей, выбор формулы цели для достижения выбранного критерия практического управления производством решений.

    2) Ресурсы. Анализ моделей ресурсов управления производством решений, содержащихся в банке альтернатив; исследование возможностей их применения. Определение последовательности применения подходящих моделей, выбор модели комплекса ресурсов для практического управления производством решений.

    3) Ограничения. Анализ моделей ограничений на цели, ресурсы, методы управления производством решений, содержащихся в банке альтернатив; исследование возможностей их применения. Определение последовательности применения подходящих моделей, выбор ограничений на цели, ресурсы, методы для практического управления производством решений.

    4) Методы. Анализ моделей управления производством решений, содержащихся в банке альтернатив; исследование возможностей их применения. Определение последовательности использования подходящих моделей для разрешения данной практической проблемы. Выбор одной из моделей управления производством решений для практического управления производством решений.

    5) Применение. Анализ моделей реализации управления производством решений; исследование возможностей их применения. Выбор и применение одной из подходящих моделей для реализации выбранного на предыдущих этапах 1–4 сочетания «цели, ресурсы, ограничения, управление производством решений» для практического управления производством решений.

    6) Оценка. Анализ моделей оценки эффективности данного варианта сочетания «цели, ресурсы, ограничения, управление производством решений», содержащихся в банке альтернатив; исследование возможностей их применения. Применение одной из подходящих моделей для оценки эффективности управления производством решений с помощью данного сочетания «цели, ресурсы, ограничения, управление производством решений». Подготовка проекта решения о выборе данного варианта сочетания «цели, ресурсы, ограничения, управление производством решений», если достигнута удовлетворительная оценка. Если оценка эффективности неудовлетворительна, то происходит переход к процессу 7.

    7) Координация. Анализ моделей координации осуществления процессов 1–4, 5,6; исследование возможностей их применения. Применение одной из подходящих моделей для согласованного принятия решений по выбору определенного варианта сочетания «цели, ресурсы, ограничения, управление производством решений», использование которого возможно для удовлетворительного управления производством решений (координация совокупности процессов 1–4). Применение одной из подходящих моделей для координации адекватности реализации выбранного варианта сочетания «цели, ресурсы, ограничения, управление производством решений» (координация процесса 5). Применение одной из подходящих моделей для принятия решения по результатам оценки (координация процесса 6).

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) детальная разработка двухстадийного комплекса целенаправленных процессов управления производством государственных управленческих решений;

    2) схема учебного тренинга по изучению данного комплекса процессов принятия решений.

    Подготовка и проведение целостного реинженеринга (инженеринга). Целостный инженеринг, как пример эффективного применения метода системной технологии в целом, рассмотрен в работах автора[109] . Здесь мы рассмотрим один из вопросов, а именно – применение модели целенаправленного процесса деятельности для целостного инженеринга. Приведем следующие определения для удобства решения задачи.

    Решаемая здесь задача относится к реинженерингу бизнес-процессов фирмы (BPR). Впервые, как уже упоминалось, термин "реинженеринг бизнес – процессов" был введен М. Хаммером в 1990г. как "фундаментальное перепроектирование бизнес – процессов компаний для достижения коренных улучшений в основных актуальных показателях их деятельности: стоимость, качество, услуги и темпы"[110] . По М. Хаммеру BPR – это отход от базовых принципов построения предприятий и превращение процесса создания бизнеса в инженерную деятельность. Базовыми понятиями BPR являются бизнес-система, бизнес-процесс, деловая процедура. Эти понятия отвечают совокупности понятий системной философии деятельности, таких, например, как система, процесс и процедура, создаваемые для получения конкретного результата.

    Известно (утверждение 4.2.2, п. 4.2.2б): для производства результата с качественными и количественными характеристиками, необходимыми носителю проблемы для разрешения актуализировавшейся проблемы, среда М выделяет некоторый объект деятельности, который затем преобразуется и входит в триаду «объект-субъект-результат».

    Таким объектом деятельности является, в данном случае, производственная система, представляющая собой триаду «объект-субъект-результат». В производственной системе осуществляются процессы производства результата, которые принято называть бизнес-процессами. Бизнес-процессы направлены на производство таких продуктов производства, как знания, товары, услуги. Кроме того, бизнес-процессами производственной системы являются и процессы производства и утилизации отходов производства, экологические технологии. К бизнес-процессам относятся также и процессы производства управленческих решений, производства маркетинговых услуг, осуществления логистических операций и т.д.

    Нетрудно доказать, что в отношении любого бизнес-процесса, осуществляемого производственной системой, справедливы все утверждения, сформулированные нами в настоящем разделе. Одна из основных задач целостного инженеринга – преобразование бизнес-процессов фирмы в целостные бизнес-процессы, эффективно решается при наличии некоторой типовой модели бизнес-процесса. В качестве такой типовой модели бизнес-процесса при осуществлении целостного инженеринга используется рассматриваемая нами общая модель целенаправленного бизнес-процесса деятельности, состоящая, как ранее установлено, из семи взаимосвязанных процессов: 1) формулирование цели; 2) определение наличных ресурсов; 3) установление ограничений на цели, ресурсы, методы; 4) нахождение методов использования ресурсов для достижения цели при заданных ограничениях; 5) применение найденных методов для достижения цели; 6) оценка эффективности достижения цели и выбор данного метода, если достигнута удовлетворительная оценка. Если оценка эффективности неудовлетворительна, то происходит переход к этапу 7) координация осуществления (повторения) процессов 1–4, 5,6.

    В производственной триаде «объект-субъект-результат» мы выделим для целей дальнейшего изложения две основные системы:

    а) технологическая система производства. Здесь будем рассматривать только ту часть технологической системы, которая осуществляет производство основной продукции. Она состоит из взаимосвязанных и взаимодействующих человеко-машинных комплексов, представляющих собой основную часть объекта производственной триады;

    б) система управления производством. Здесь будем рассматривать только ту часть системы управления, которая осуществляет управление основным производством. Она состоит из взаимосвязанных и взаимодействующих человеко-машинных комплексов, представляющих собой основную часть субъекта производственной триады;

    Рассмотрим целенаправленные процессы, осуществляемые в этих системах.

    Целенаправленные процессы производства основного продукта. Функционирование технологической системы производства направлено на некоторое целенаправленное изменение свойств, формы, состояния предмета труда для получения основной продукции в виде знания, товара, услуги (напр., знания обученных выпускников магистратуры, пищевой продукт, юридическая услуга). При этом функционирование технологической системы должно удовлетворять комплексу условий, ранее рассмотренных нами в главе 2. Это, например, условия принципов обогащения, технологической дисциплины. В большинстве случаев существует возможность последовательной проверки альтернатив для окончательного выбора и реализации этих условий на практике. Процесс обеспечения выполнения условий технологии производства можно представить в виде двухстадийного комплекса целенаправленных процессов деятельности. Рассмотрим его применительно к реализации Принципа обогащения, который, как мы знаем из глав – 2 и 3, формулируется следующим образом: каждый элемент целого (как и все целое) должен придавать новые полезные свойства (и/или форму, и/или состояние) преобразуемому ресурсу (предмету труда) в смысле достижения цели получения цельного и целостного результата данного целого, увеличивающие потенциал целого и результата его деятельности.

    На первой стадии осуществляется целенаправленный процесс формирования банка возможных решений, обеспечивающих выполнение Принципа обогащения, на второй стадии – целенаправленный процесс практического обеспечения выполнения Принципа обогащения.

    Целенаправленный процесс первой стадии можно описать, как состоящий из следующих этапов деятельности:

    1) моделирование комплекса целей. Анализ возможностей реализации Принципа обогащения во всех частях технологической системы производства, а также возможных критериев оценки реализации данного Принципа. Составление целостного и цельного комплекса целей достижения удовлетворительных значений данных критериев. На данном этапе процесса описываются все модели цели технологической системы производства, достижение которых приводит к удовлетворительному, в смысле принятых критериев, реализации Принципа обогащения;

    2) моделирование комплекса ресурсов, необходимых для реализации Принципа обогащения. На данном этапе описываются количественные и качественные показатели всех ресурсов, которые, во-первых, желательно привлечь для реализации Принципа обогащения и которые, во-вторых, допустимо использовать для реализации Принципа обогащения;

    3) моделирование комплекса методов. Этот этап состоит в нахождении возможных альтернативных методов реализации Принципа обогащения. В результате формируется комплекс всех возможных регламентов осуществления технологического процесса, приводящих к регулярной реализации Принципа обогащения каждой его частью;

    4) моделирование комплекса ограничений на цели, на альтернативы методов и на ресурсы для реализации Принципа обогащения. Данные модели описывают обоснованные ограничения на цели, ресурсы, методы реализации Принципа обогащения. Кроме того, в этих моделях описываются и взаимосвязи ограничений для тех комбинаций целей, ресурсов, методов, которые приводят к достижению удовлетворительного значения комплекса принятых критериев реализации Принципа обогащения;

    5) моделирование реализации комплекса решений. Этот этап состоит в построении моделей апробации (компьютерных или иных) комплекса всех возможных альтернатив реализации Принципа обогащения, составленных на этапе «моделирование комплекса методов» с учетом полученных на предыдущем этапе моделей комплексов ограничений;

    6) моделирование оценки эффективности. Этот этап состоит в построении моделей оценки эффективности каждой из возможных альтернатив реализации Принципа обогащения, апробация которых предусматривается предыдущим этапом. В результате формируются модели, описывающие возможные методы оценки эффективности (в смысле принятых критериев реализации Принципа обогащения) комплекса принятых альтернатив реализации Принципа обогащения. Кроме того, в этот комплекс моделей входят также модели возможных вариантов решений о приемлемости альтернатив реализации Принципа обогащения по результатам оценки их потенциальной эффективности;

    7) моделирование координации. Этот этап состоит в построении моделей согласованного принятия решений по выбору вариантов реализации Принципа обогащения, использование которых приемлемо в смысле удовлетворения комплекса критериев реализации Принципа обогащения (координация процессов 5,6). На этом этапе осуществляется также построение модели координации сочетания «методы, цели, ресурсы, ограничения» для каждого альтернативного варианта реализации Принципа обогащения (модели координации процессов 1–4).

    В результате осуществления первой стадии процесса реализации Принципа обогащения формируется банк альтернатив реализации Принципа обогащения, приемлемых в смысле удовлетворительного соответствия выбранному комплексу критериев. Этот банк альтернатив можно также считать концептуальной системой реализации Принципа обогащения.

    Целенаправленный процесс второй стадии – практической реализации Принципа обогащения, можно описать, как состоящий из следующих этапов деятельности:

    1) Цели. Анализ моделей цели, содержащихся в банке альтернатив; исследование возможностей их применения. Выбор последовательности применения подходящих моделей, выбор формулы цели для реализации Принципа обогащения на практике.

    2) Ресурсы. Анализ моделей ресурсов деятельности, содержащихся в банке альтернатив; исследование возможностей их применения. Определение последовательности применения подходящих моделей, выбор модели комплекса ресурсов для реализации Принципа обогащения на практике.

    3) Ограничения. Анализ моделей ограничений на цели, ресурсы, методы, содержащихся в банке альтернатив; исследование возможностей их применения. Определение последовательности применения подходящих моделей, выбор ограничений на цели, ресурсы, методы для реализации Принципа обогащения на практике.

    4) Методы. Анализ моделей реализации Принципа обогащения, содержащихся в банке альтернатив; исследование возможностей их применения. Определение последовательности использования подходящих моделей для реализации Принципа обогащения. Выбор одной из моделей государственного управленческого решения для реализации Принципа обогащения на практике.

    5) Применение. Анализ моделей реализации Принципа обогащения; исследование возможностей их применения. Выбор и применение одной из подходящих моделей для реализации выбранного на предыдущих этапах 1–4 сочетания «цели, ресурсы, ограничения, метод» для реализации Принципа обогащения на практике.

    6) Оценка. Анализ моделей оценки эффективности данного варианта сочетания «цели, ресурсы, ограничения, метод», содержащихся в банке альтернатив; исследование возможностей их применения. Применение одной из подходящих моделей для оценки эффективности реализации Принципа обогащения с помощью данного сочетания «цели, ресурсы, ограничения, метод». Подготовка проекта решения о выборе данного варианта сочетания «цели, ресурсы, ограничения, метод», если достигнута удовлетворительная оценка реализации Принципа обогащения на практике. Если оценка эффективности неудовлетворительна, то происходит переход к процессу 7.

    7) Координация. Анализ моделей координации осуществления процессов 1–4, 5,6; исследование возможностей их применения. Применение одной из подходящих моделей для согласованного принятия решений по выбору определенного варианта сочетания «цели, ресурсы, ограничения, метод», использование которого возможно для удовлетворительной реализации Принципа обогащения на практике (координация совокупности процессов 1–4). Применение одной из подходящих моделей для координации адекватности реализации выбранного варианта сочетания «цели, ресурсы, ограничения, метод» (координация процесса 5). Применение одной из подходящих моделей для принятия решения по результатам оценки реализации Принципа обогащения на практике (координация процесса 6).

    Другие целенаправленные процессы производства и управления. Предложенная модель целенаправленного процесса деятельности позволяет наглядно описывать и конструировать процессы достижения цели при построении и реализации самых разных системных технологий производства и управления.

    Планирование, напр., моделируется следующим образом: 1) формирование, постановка системы целей плана, 2) определение ресурсов, имеющихся в распоряжении планировщика, 3) выявление, нахождение методов формирования плана, 4) установление ограничений на цели, ресурсы и методы, 5) применение методов для расчета плана, его вариантов (по разным критериям эффективности планирования, например), 6) оценка и сравнение вариантов плана согласно системе целей (либо по экспертным оценкам), 7) координация этапов системного процесса планирования, их повторение, если не найден приемлемый вариант плана.

    Процесс организации, как целенаправленный процесс, моделируется тогда следующим образом: 1) формулирование цели – создать структуру системы для конкретной реализации плана, характеризующуюся определенными показателями (например, долговечностью, надежностью и др.); 2) определение, составление перечня наличных ресурсов – человеческих, материальных, энергетических и др., установление множества элементов будущей структуры, множества взаимодействий между ними и множества способов (средств) реализации этих взаимодействий; 3) нахождение методов использования этих ресурсов для построения определенной структуры системы реализации плана; 4) установление ограничений на взаимодействия между элементами структуры, на способы и средства их реализации (например, по стоимости), на количество элементов, подсистем, уровней структуры производства (например, ограничение структуры производства не более чем двумя уровнями) и других; 5) применение (или апробация) структуры системы реализации плана; 6) оценка эффективности структуры (например, по показателям стоимости, эффективности и надежности) и 7) координация (в т.ч. и корректировка) процессов структурирования системы реализации плана.

    Процесс выборности руководителей (регионов, населенных пунктов и т.д.) моделируется, к примеру, следующим образом: 1) Цель — найти общую модель системы для триады «ожидания от выборности, схема выборности, полезность результата выборности»; 2) Ресурс — способы моделирования крупномасштабных и сложных социальных систем, модели ожиданий социума, модели предполагаемых полезностей, модели схем выборности, информация о теории, методологии и практике выборности руководителей подобного уровня, метод системной технологии деятельности; 3) Ограничения — выборность должна быть полезной для всех элементов социума. Кроме этого вводятся духовные, нравственные, интеллектуальные, физические ограничения, финансовые, материально-технические, временные, территориальные ограничения и другие; 4) Метод — метод системной технологии для объединения частных моделей в общую модель выборности с учетом ограничений; 5) Применение — применение (в том числе в качестве объекта дискуссии, в качестве эксперимента на одной или нескольких территориях и т.п.); 6)Оценка эффективности — определение эффективности для социума в целом, для его элементов, определение влияний на другие модели осуществления деятельности государственной власти; 7) Координация — переопределение целей, ресурсов, методов, ограничений в соответствии с результатами оценки эффективности выбранной модели общей системы для триады «ожидания от выборности, схема выборности, полезность результата выборности».

    Нетрудно заметить, что применение описанной в данном разделе модели целенаправленного процесса деятельности позволяет учесть все возможные аспекты выборной деятельности и в теории и в практике.

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) общая модель целенаправленных процессов субъекта планирования деятельности фирмы;

    2) общая модель целенаправленных процессов организации для триады деятельности фирмы;

    3) разработка общей модели целенаправленных процессов стратегирования для триады деятельности фирмы и для субъекта триады деятельности фирмы;

    При этом предлагается исходить из следующих положений: фирма – целостная и цельная совокупность частей среды, обеспечивающая взаимодействие внутренней среды фирмы с внешней средой; стратегия – целенаправленный процесс деятельности. Вначале необходимо составить перечень проблем, на разрешение которых в обществе ориентирована стратегия фирмы. Затем перечень результатов, которые может производить фирма. Затем моделирование комплекса целей фирмы по производству комплекса результатов. И таким образом продолжить составление модели целенаправленного процесса стратегической деятельности; стратегический план – план целенаправленного процесса стратегической деятельности по согласованному достижению миссионерских и собственных целей фирмы.

    • Можно сделать следующие выводы.

    Данная модель целенаправленного процесса деятельности обладает свойством общей модели, т.е. позволяет описать все многообразие известных моделей целенаправленных процессов. В результате применение данной модели целенаправленного процесса деятельности эффективно в процессе проведения реинженеринга для разработки и при практической реализации проектов развития производственных систем.

    Модель целенаправленного процесса деятельности наглядна и проста. С ее помощью любой, сколь угодно сложный процесс анализа, исследований, проектирования, производства и управления можно представить в простой форме, позволяющей описать его каждую составляющую в виде последовательности простых и понятных операций, действий, движений. В результате можно сложные процессы в системах производства и управления представить, как систему простых и наглядных процессов, причем в единообразной форме. Вследствие этого появляется практическая возможность алгоритмизации и компьютеризации сложных процессов анализа, исследований, производства и управления и других процессов для любых сфер деятельности с применением общей модели целенаправленной и целесообразной деятельности.

    4.3. Общая модель целостного процесса деятельности

    Основные составляющие целостного процесса деятельности. Процессы деятельности мы рассматриваем, как сложные и/или большие процессы, т.е. как процессы, для описания которых недостаточно одной общей модели. Рассмотренная в предыдущем разделе общая модель целенаправленного процесса деятельности – это модель, построенная с позиций необходимой целесообразности процесса. Это модель, отвечающая требованиям внешней среды процесса в смысле достижения цели решения некоторой проблемы внешней среды. Ее мы дополняем моделью, построенной с позиций необходимой структуры процесса. В данном случае мы исходим из того очевидного факта, что достичь цели процесса, образно говоря, «за один проход» невозможно, как правило. К примеру, для разрешения какой-либо проблемы недвижимости в населенном пункте (напр., нехватки жилья) необходимо проанализировать потребность в жилье, возможности строительных и связанных с ними производств по возведению жилья. Далее, необходимо исследовать районы предлагаемой застройки и возможности использования различных типов жилья и строительных технологий. Затем необходимо осуществить проектирование, перейти к производству строительства. Кроме того, необходимо получить или подтвердить соответствующие лицензии и получить разного типа разрешения – санитарно-эпидемиологических, экологических, пожарно-технических, иных служб. Нужна также экспертиза проекта, управление процессом возведения жилья, контроль со стороны различных служб за соответствием возводимого жилья их требованиям. И после сдачи жилья в эксплуатацию необходимо архивирование проекта и внесение в него изменений проектировщиком при необходимости.

    Конечно, приведенное описание процесса строительства далеко от полноты с позиций профессионала-строителя. Но главное для цели настоящего раздела это описание отражает – процесс получения некоторого результата, необходимого для решения актуализировавшейся проблемы, содержит в себе несколько подпроцессов. В ряде уже упоминавшихся работ автором показано, что основными составляющими целостного процесса деятельности являются анализ, исследование, проектирование, производство, управление, экспертиза, разрешение, контроль, архив.

    • Актуализировавшаяся проблема – проблема целостности носителя проблемы. Актуализировавшаяся проблема, в соответствии с ранее принятыми определениями, это одна из проблем выживания, сохранения и развития части среды. Такую часть среды мы называем носителем проблемы, которому необходим определенный результат (продукт, изделие) в виде знания, товара, услуги для ее разрешения (утверждение 4.2.1, п.п. 4.2.1а,б). С другой стороны, мы установили, что целое – наилучший способ выживания сохранения и развития частей среды. Другими словами, целое это такой формат состояния совокупности частей среды, когда проблемы выживания, сохранения и развития части среды разрешены наилучшим образом. Тогда часть среды осуществляет свое функционирование в условиях, когда проблемы выживания, сохранения и развития находятся в определенном приемлемом состоянии, не «актуализируются». Для этого части среды предоставляются соответствующие результаты, производимые другими частями среды ее деятельности. Эти результаты должны отвечать определенным требованиям к качеству и количеству для удовлетворительного разрешения актуализировавшейся проблемы носителем проблемы на обозримый период (утверждение 4.2.1, п.п. 4.2.1в). Для производства результата с качественными и количественными характеристиками, необходимыми носителю проблемы для разрешения актуализировавшейся проблемы, среда выделяет некоторый объект деятельности, который затем преобразуется и входит в триаду «объект-субъект-результат» (утверждение 4.2.2, п. 4.2.2б). Тем самым среда и другие части среды проявляют целостность по отношению к данной части среды, в которой актуализировалась некоторая проблема (целостности первого и третьего вида).

    На основании изложенного можно отметить, что проблема выживания, сохранения и развития актуализируется в связи с нарушением целостности функционирования части среды и целости совокупности частей среды. Проявление целостности среды и частей среды по отношению к данной части среды реализуется определенным целостным процессом деятельности. Собственно актуализировавшаяся проблема выживания, сохранения и развития является тогда проблемой утраты целостности и цельности, кратко можно называть ее также и проблемой целостности. Рассматриваемый целостный процесс деятельности необходим для производства целостного результата, с помощью которого данная проблема целостности может быть разрешена. Цель данного процесса – произвести результат, потребление которого решит проблему целостности носителя проблемы. Таким же целенаправленным является и процесс решения проблемы целостности путем потребления некоторого результата (начиная с виртуального потребления идеи результата) носителем проблемы: потребление данного результата, производимого для решения проблемы целостности приводит к некоторому новому результату – новому качеству результатов производства своей продукции носителем проблемы. Его результаты, в свою очередь, позволяют решить проблему целостности других частей среды.

    Итак, в общем случае, целью целостного процесса деятельности является производство результата, потребление которого носителем проблемы решает проблему целостности. По этой причине при рассмотрении всех стадий целостного процесса мы ограничимся этой формулой цели.

    Проекты целостного процесса. Целостный процесс деятельности имеет начало — от момента возникновения идеи решения актуализировавшейся проблемы в среде М с помощью определенного результата и окончание — в момент признания данного результата непригодным для дальнейшего использования в смысле решения указанной проблемы. Окончание каждой из составляющих процесса деятельности представляется в виде комплексов документов, которые для единообразия назовем проектами.

    В момент возникновения идеи, как основного принципа устройства определенного результата, возникает необходимость анализа полезности данной идеи и возможностей решения некоторой проблемы в среде М с помощью результата, устроенного в соответствии с данной идеей. По окончании этой части деятельности возникает аналитический проект, описывающий полезность и возможный вклад результата в решение проблемы.

    Далее предлагаемый принцип устройства результата необходимо исследовать на его практическую осуществимость с учетом возможного привлечения ресурсов, выбора возможной технологии производства результата. Необходимо также теоретическое и экспериментальное исследование на предмет сравнения предлагаемого результата с существующими и возможными альтернативами. По окончании создается исследовательский проект, описывающий осуществимость производства данного результата, идея которого корректируется с учетом возможностей реального производства и по результатам сравнительных исследований.

    Далее, если анализ и исследования показали полезность для среды М и осуществимость производства данного результата, необходимо проектирование данного результата. На этапе проектирования создается (иногда в несколько этапов) рабочий проект, описывающий конструкцию и технологию конкретного производства данного результата. Рабочий проект дает возможность производства результата в необходимом количестве и с соответствующим качеством, позволяющим на регулярной основе разрешать актуализировавшуюся в среде М проблему.

    • Процессы анализа, исследований, проектирования, производства контролируются и управляются. Кроме контроля и управления, качественные и количественные характеристики всех этих процессов и их результатов проходят, как правило, экспертизу. Для их осуществления необходимо, как правило, разрешение в форме различных организационно-распорядительных, нормативных и правовых документов, напр., лицензии.

    Целостный процесс деятельности осуществляется одной или несколькими триадами деятельности. Анализ, исследование, проектирование, производство осуществляются одним или несколькими объектами деятельности, выделяемыми средой М для производства результата. При этом анализ, исследование, проектирование создают концептуальный результат – от идеи до рабочего проекта. Производство создает реальный результат, потребляемый носителем проблемы в среде М. Управление, экспертиза, разрешение, контроль – виды деятельности нескольких субъектов деятельности, обеспечивающих баланс собственных и миссионерских целей объектов деятельности. Архив – концептуальная деятельность триады «объект-субъект-результат», связанная с переходом среды М к другой идее решения проблемы.

    • Важно еще одно обстоятельство, которое надо учитывать при осуществлении каждой из составляющих целостного процесса деятельности – анализа, исследования, проектирования, производства, управления, экспертизы, разрешения, контроля, архивирования. Каждый из этих процессов, также как и весь процесс, имеет начало – от момента возникновения идеи осуществления процесса (напр., анализа) для решения актуализировавшейся проблемы в среде М и окончание – в момент признания результата данного процесса (напр., аналитического проекта) уже ненужным для дальнейшего использования при решении указанной проблемы. Каждый из этих процессов также может быть описан рассматриваемой здесь моделью целостного процесса деятельности.

    Так, например, моделью целостного процесса деятельности может быть описан процесс анализа – от идеи проведения анализа до его завершения. Вначале необходим анализ идеи аналитической работы. В момент возникновения идеи аналитической работы, как основного принципа устройства технологии аналитической работы, возникает необходимость анализа полезности данной технологии для изучения возможностей решения некоторой проблемы в среде М с помощью различных результатов (продуктов, изделий в виде знаний, товаров, услуг). Далее предлагаемый принцип устройства аналитической работы необходимо исследовать на его практическую осуществимость, необходимо проектирование и производство данной технологии аналитической работы. Процессы создания и производства технологии аналитической работы контролируются и управляются. Кроме контроля и управления, качественные и количественные характеристики всех этих процессов и их результатов проходят, как правило, экспертизу. Для их осуществления необходимо, как правило, разрешение в форме различных организационно-распорядительных, нормативных и правовых документов, напр., лицензии, решения тендерной комиссии и т.п.

    Три основных условия. Рассматриваемый нами в следующей главе метод системной технологии осуществляется как целостный процесс деятельности, содержащий процессы анализа, исследования, проектирования, производства, управления, экспертизы, разрешения, контроля, архивирования. При этом целостный процесс деятельности, а также каждый из составляющих его процессов, осуществляются с применением модели целенаправленного процесса деятельности, рассмотренного нами в предыдущем разделе. Триада деятельности, осуществляющая целостный процесс деятельности, в соответствии с положениями системной философии имеет определенный жизненный цикл. Кроме этого, она взаимодействует с другими триадами деятельности и их составляющими. Для того чтобы учесть эти и другие условия системной философии, необходимо целостную модель процесса дополнить рядом других моделей – жизненного цикла, целостной и целой моделью системы, моделями взаимодействия с различными сферами в среде М и другими. Все эти модели описываются в последующих разделах настоящей главы.

    При рассмотрении модели целостного процесса деятельности и ее составляющих необходимо учитывать три основных условия:

    1) составляющими целостного процесса деятельности являются процессы анализа, исследования, проектирования, производства, управления, экспертизы, разрешения, контроля, архивирования;

    2) каждый из процессов анализа, исследования, проектирования, производства, управления, экспертизы, разрешения, контроля, архивирования необходимо описывать моделью целостного процесса деятельности;

    3) как целостный процесс деятельности, так и каждую его составляющую необходимо описывать моделью целенаправленного процесса деятельности.

    Условие 2) можно рассматривать, как применение следствия 5.6 постулата 5 «существования ядра целого» целостного метода системной технологии. Для данного случая его можно сформулировать в следующем виде: модель целостного процесса деятельности – ядро общей модели целостного процесса деятельности и моделей его компонент – анализа, исследования, проектирования, производства, управления, экспертизы, разрешения, контроля, архивирования.

    Условие 3) можно рассматривать, как применение Принципа целостности деятельности, который для данного случая можно сформулировать в следующем виде: для формирования и осуществления целостного процесса деятельности необходимо данный процесс деятельности и его составляющие – анализ, исследование, проектирование, производство, управление, экспертиза, разрешение, контроль, архив, описывать одной общей моделью целенаправленного процесса деятельности.

    Общую модель целостного процесса деятельности тогда можно описать в виде целенаправленного процесса, состоящего из семи взаимосвязанных процессов выбора: 1) формулирование комплекса целей производства и потребления предлагаемого результата; 2) определение комплексов наличных ресурсов производства и потребления предлагаемого результата; 3) установление комплексов ограничений на цели, ресурсы, методы производства и потребления предлагаемого результата; 4) формирование комплекса методов использования ресурсов для достижения цели производства и потребления предлагаемого результата при заданных ограничениях; 5) применение определенного сочетания «цели, ресурсы, ограничения, методы» производства и потребления предлагаемого результата; 6) оценка эффективности определенного сочетания «цели, ресурсы, ограничения, методы» производства и потребления предлагаемого результата и выбор данного сочетания, если достигнута удовлетворительная оценка. Если оценка эффективности неудовлетворительна, то происходит переход к этапу 7) координация осуществления (повторения) процессов 1–4, 5,6.

    Эта модель целостного процесса деятельности применима и для описания таких составляющих его процессов, как анализ, исследование, проектирование, производство, управление, экспертиза, разрешение, контроль, архив в соответствии с условием 3). В соответствии с условием 2) результаты каждого предыдущего процесса, например анализа, используются далее при исследовании, при проектировании и т.д. Кроме того, на последующих процессах анализ, при необходимости, проводится вновь, например, для уточнения исходных данных при проектировании производства предлагаемого результата. Исследование также может продолжаться при необходимости исследования новых альтернатив производства. Другими словами, каждый из составляющих процессов представляет собой развивающийся целостный процесс деятельности.

    • Следующие комплексы целостных и цельных моделей нужно тогда использовать для создания целостной модели целенаправленного процесса деятельности:

    1) модели цели результата. Для этого изучаются все критерии эффективности производства результатов в смысле собственных и миссионерских целей производства, а также и критерии эффективности потребления результатов в смысле уровня разрешения проблемы целостности носителем проблемы. Составляется полный комплекс моделей целей достижения желаемых значений критериев производства и потребления. Из этого комплекса выбираются все те модели целей решения проблемы целостности, которые могут быть достигнуты путем использования предлагаемого результата;

    2) модели ресурсов деятельности. Данные модели описывают количественные и качественные показатели всех комплексов ресурсов, необходимых для воплощения в реальности производства и потребления предлагаемого результата. Из этих комплексов ресурсов выделяются доступные в данный момент для производства и потребления предлагаемого результата;

    3) модели методов использования ресурсов для достижения цели деятельности. Данные модели описывают все возможные методы и технологии регулярного производства и потребления предлагаемого результата для решения проблемы целостности;

    4) модели ограничений производства. Данные модели описывают обоснованные ограничения на цели, ресурсы, методы и их взаимосвязи для возможных комбинаций целей, ресурсов, методов производства и потребления предлагаемого результата для решения проблемы целостности;

    5) модели реализации найденных методов использования ресурсов для реализации идеи результата при заданных ограничениях. Данные модели описывают возможные сочетания «методы, цели, ресурсы, ограничения» производства и потребления предлагаемого результата для решения проблемы целостности;

    6) модели оценки эффективности данного варианта сочетания «методы, цели, ресурсы, ограничения», в смысле критериев удовлетворительного разрешения данной проблемы целостности. Данные модели описывают возможные методы оценки эффективности реализации предлагаемого результата в смысле принятых критериев оценки эффективности разрешения данной проблемы целостности. Кроме того, в этот комплекс моделей входят также модели возможных вариантов решений для различных вариантов оценки;

    7) модели координации осуществления процессов 1–4, 5,6. Данные модели представляют собой модели согласованного принятия решений по выбору определенного варианта сочетания «методы, цели, ресурсы, ограничения», использование которого возможно для удовлетворительного разрешения данной, актуализирующейся в среде, проблемы целостности (координация совокупности процессов 1–4). В этот комплекс моделей входят также модели координации адекватности реализации выбранного варианта сочетания «методы, цели, ресурсы, ограничения» (координация процесса 5), а также модели принятия решений по результатам оценки эффективности решения проблемы целостности (координация процесса 6).

    Формирование данного комплекса моделей необходимо для обеспечения целостности и цельности целенаправленного процесса анализа.

    Общую целостную и целую модель целенаправленного процесса анализа можно описать, с учетом применения данных комплексов моделей, как состоящую из семи взаимосвязанных процессов выбора, более подробно следующим образом:

    1) Цели. Составление перечня подходящих моделей цели производства и потребления предлагаемого результата. Выбор последовательности применения подходящих моделей цели. Выбор определенного комплекса формул цели производства и потребления предлагаемого результата для разрешения данной, актуализирующейся в среде, проблемы целостности.

    2) Ресурсы. Составление перечня моделей ресурсов производства и потребления предлагаемого результата. Определение последовательности применения подходящих моделей. Выбор модели комплекса ресурсов для производства и потребления предлагаемого результата для разрешения данной проблемы целостности.

    3) Ограничения. Выбор моделей ограничений на цели, ресурсы, методы производства и потребления предлагаемого результата. Выбор последовательности применения подходящих моделей ограничений. Выбор ограничений на цели, ресурсы, методы производства и потребления предлагаемого результата для разрешения данной проблемы целостности.

    4) Методы. Выбор моделей методов использования ресурсов для производства и потребления предлагаемого результата. Выбор последовательности использования подходящих моделей для производства и потребления предлагаемого результата. Выбор одной из моделей для производства и потребления предлагаемого результата для разрешения данной проблемы целостности.

    5) Применение. Выбор моделей реализации найденных методов использования ресурсов для производства и потребления предлагаемого результата при заданных ограничениях. Выбор и применение одной из подходящих моделей для производства и потребления предлагаемого результата для разрешения данной проблемы целостности.

    6) Оценка. Выбор моделей оценки эффективности данного варианта сочетания «методы, цели, ресурсы, ограничения» для производства и потребления предлагаемого результата. Выбор одной из подходящих моделей для оценки эффективности производства и потребления предлагаемого результата. Подготовка проекта решения о выборе данного варианта сочетания «методы, цели, ресурсы, ограничения», если достигнута удовлетворительная оценка эффективности решения данной проблемы целостности. Если оценка эффективности неудовлетворительна, то происходит переход к процессу 7.

    7) Координация. Выбор моделей координации осуществления процессов 1–4, 5,6. Выбор одной из подходящих моделей для согласованного принятия решений по выбору определенного варианта сочетания «методы, цели, ресурсы, ограничения». Использование выбранного варианта координации совокупности процессов 1–4. Выбор и применение одной из подходящих моделей для координации адекватности реализации выбранного варианта сочетания «методы, цели, ресурсы, ограничения» (координация процесса 5). Выбор и применение одной из подходящих моделей для принятия решения по результатам оценки эффективности решения проблемы целостности (координация процесса 6).

    • Описание составляющих целостного процесса. Далее в данном разделе мы рассмотрим вопросы применения модели целенаправленного процесса для описания составляющих целостного процесса деятельности – анализа, исследования, проектирования, производства, управления, экспертизы, разрешения, контроля, архивирования. Для наглядности мы не будем рассматривать собственно технологии этих процессов и ограничимся постановкой одной цели для каждого из этих процессов. На практике, конечно, каждый из этих процессов осуществляется по определенной технологии довольно специфичной, как для каждого из процессов, так и для сферы применения каждой технологии. Но в общем виде любая технология может быть описана в виде системной технологии, как комплекс целенаправленных процессов. Кроме того, на практике каждый из этих процессов направлен на достижение комплекса целей. Для этого комплекса целей создаются специальные комплексные критерии их достижения, которые затем, как правило, преобразуются в один интегральный критерий достижения цели. Или в несколько последовательно достигаемых критериев. И процесс, во многих практических случаях, направлен на достижение одной (или нескольких – последовательно по одной) цели обеспечения нужного значения критерия решения проблемы.

    Мы же ограничимся одной целью – произвести некий результат для разрешения определенной проблемы целостности, актуализировавшейся в среде М. Последовательно описывая компоненты данного целостного процесса деятельности, мы проходим на модели весь путь решения проблемы. Это путь от появления и признания идеи результата – первоначальной концептуальной формы результата, до его производства в реальной форме и, затем, до его снятия с производства и архивирования – перевода в конечную концептуальную форму. Конечно, мы описываем только целостную схему этого пути. Но она нам потребуется в дальнейшем – по мере описания новых целостных и целых моделей процессов, структур, систем мы будем дополнять эту схему новыми фрагментами. В результате в главе 6, посвященной описанию метода системной технологии и в главах, посвященных приложениям системной философии, эта схема перейдет в новое качество полного, в смысле системной философии, описания целостного процесса и его применений. И схему, и полное описание можно использовать для подготовки практических методик специальных приложений системной философии.

    Перейдем к рассмотрению целостного анализа, как одной из составляющих целостного процесса деятельности.

    Целостный анализ (как и составляющие системной технологии анализа) может быть представлен двухстадийной моделью целенаправленного процесса деятельности следующим образом. Для анализа представляется проблема целостности, актуализировавшаяся в среде и некая идея результата (продукта, изделия в виде знания, товара, услуги), позволяющая, по мнению автора идеи, разрешить данную проблему. Результат, производство которого может быть осуществлено в соответствии с предлагаемой идеей, для краткости изложения назовем предлагаемым результатом.

    Цель анализа – определить полезность идеи предлагаемого результата и возможности его реализации для решения поставленной проблемы целостности носителя проблемы. Метод анализа – разложение проблемы, предлагаемой идеи результата, других предметов анализа на составляющие, в соответствии с положениями и постулатами целого и целостности, правилами, Принципами, Законами системной философии. Изучение этих частей на предмет определения полезности идеи предлагаемого результата и возможности его реализации для решения поставленной проблемы целостности. Составление из полученных частных заключений общего вывода о полезности идеи предлагаемого результата и возможности его реализации для решения поставленной проблемы целостности носителя проблемы.

    Процесс целостного анализа соответствует рассмотренному нами описанию целостного процесса деятельности, комплекса его моделей, выбора и применения моделей.

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) разработка системной технологии целостного анализа;

    2) разработка комплекса моделей целостного анализа;

    3) разработка общей модели непосредственного разрешения проблемы;

    4) разработка методики анализа возможности обеспечения целостности второго типа для носителя проблемы путем использования выбранной Вами идеи результата.

    При выполнении исследований целесообразно использовать следующие рекомендации по составу аналитического проекта. Анализ, как часть общего целостного процесса деятельности, целостный анализ, приводит к составлению аналитического проекта, содержащего исходную информацию и рекомендации для дальнейшего осуществления целостного процесса деятельности со следующими разделами:

    1) Причины возникновения проблемы целостности. Выявление причин возникновения проблемы целостности производится в следующем порядке. Вначале определяется, является ли носитель проблемы целым или частью целого путем сопоставления сути носителя проблемы определениям целого и целостного. Затем для носителя проблемы составляется полный перечень нарушений целости и целостности, путем сопоставления его строения и деятельности с положениями и постулатами целого и целостности, правилами, Принципами, Законами системной философии. По каждому нарушению целости и целостности устанавливается, является ли оно причиной актуализации данной проблемы целостности. Устанавливается полный перечень причин постановки данной проблемы. Определяется полнота ее постановки в смысле адекватного отражения всех причин нарушений целости и целостности. Даются рекомендации по корректировке поставленной проблемы целостности, которые надо учесть при проведении исследований, проектирования и последующих процессов деятельности.

    2) Возможности предлагаемой идеи результата. Выявление возможностей предлагаемой идеи результата производится следующим образом. Вначале определяется, является ли идея целой или частью целого путем сопоставления сути идеи определениям целого и целостного. Затем для идеи составляется полный перечень соответствий целости и целостности, путем сопоставления идеи, как Принципа устройства будущего результата с положениями и постулатами целого и целостности, правилами, Принципами, Законами системной философии. По каждому соответствию целости и целостности устанавливается, является ли оно возможностью решения данной проблемы целостности. Устанавливается полный перечень возможностей решения данной проблемы, которые дает использование данной идеи. Определяется полнота решения данной проблемы путем сопоставления возможностей предлагаемой идеи результата с причинами постановки данной проблемы и составления перечня возможностей. Составляется перечень дополнительных возможностей предлагаемой идеи результата путем сопоставления ее возможностей с полным перечнем нарушений целости и целостности носителя проблемы. Разрабатываются рекомендации по корректировке предлагаемой идеи результата, которые надо учесть при проведении исследований, проектирования и последующих процессов деятельности.

    3) Возможности производства и потребления предлагаемого результата. Раздел содержит изучение возможностей использования существующих технологий производства и потребления предлагаемого результата. Здесь также содержится описание возможностей использования предлагаемой идеи результата в комплексе с имеющимися результатами.

    4) Выводы. Раздел содержит: свод рекомендаций по корректировке поставленной проблемы целостности и по корректировке предлагаемой идеи результата, которые надо учесть при проведении исследований, проектирования и последующих процессов деятельности; рекомендации по комплексному использованию имеющихся результатов и предлагаемой идеи результата; рекомендации по использованию имеющихся технологий для производства и потребления предлагаемого результата; рекомендации по проведению исследования, проектирования, управления, контроля, экспертизы и других процессов, как процессов-частей целостного процесса деятельности, в том числе – рекомендации по дальнейшему развитию анализа при осуществлении этих процессов.

    В разделе может также содержатся исходная информация для составления или уточнения задания на осуществление последующих процессов целостной деятельности – исследования, производства и т.д. Все описанные нами составляющие целостного анализа, как и собственно целостный анализ, являются целенаправленными процессами, к описанию которых можно применить общую модель целенаправленного процесса, описанную в предыдущем разделе настоящей главы.

    Необходимая исходная информация содержится в уже упоминавшихся работах автора. Рекомендуется также использовать следующую дополнительную информацию об исследовании, проектировании и экспертизе.

    Целостное исследование (как и составляющие технологического процесса исследования) также может быть представлено двухстадийной моделью целенаправленного процесса деятельности. Для построения схемы применения данной модели для описания исследования и исследовательского проекта рекомендуется использовать следующие определения. Целостное исследование – это целостная деятельность, направленная на получение и применение новых знаний для разрешения проблем выживания, сохранения и развития среды (части среды), как целого. Получаемые новые знания необходимы для решения задач собственно целостного процесса деятельности, а также его составляющих. Эти составляющие – анализ, проектирование, производство, управление, экспертиза, разрешение, контроль, архивирование. Процесс исследования включает в себя анализ возможностей построения теории и практики реализации предлагаемой идеи результата для разрешения проблем выживания, сохранения и развития среды (части среды), как целого, разработку проекта исследования, производство исследования, управление исследованием, экспертизу проекта и результатов исследования, получение разрешений на исследование, контроль исследований, архивирование исследований.

    Производство целостного исследования может быть по своей направленности фундаментальным и прикладным. Фундаментальное целостное исследование направлено на получение новых знаний об основных закономерностях формирования, актуализации и разрешения проблем выживания, сохранения и развития среды (части среды), как целого. Прикладное целостное исследование направлено на применение новых знаний для практического разрешения проблем выживания, сохранения и развития среды (части среды), как целого. По своей структуре процесс целостного исследования, как фундаментального, так и прикладного, – целенаправленный процесс деятельности.

    Фундаментальное исследование тогда описывается следующей моделью:

    1) формулирование комплекса целей исследования, направленных на разрешение проблем выживания, сохранения и развития среды (части среды), как целого, путем получения и апробации нового знания;

    2) определение комплексов наличных ресурсов производства и потребления предполагаемого результата исследования в виде нового знания о разрешении проблем выживания, сохранения и развития среды (части среды), как целого;

    3) установление комплексов ограничений на цели, ресурсы, методы производства и потребления предполагаемого результата исследования в виде нового знания о разрешении проблем выживания, сохранения и развития среды (части среды), как целого;

    4) формирование проекта производства исследования в виде совокупности комплексов «цели, ресурсы, ограничения, методы» получения нового знания о разрешении проблем выживания, сохранения и развития среды (части среды), как целого;

    5) применение определенного комплекса «цели, ресурсы, ограничения, методы» для получения нового знания о разрешении проблем выживания, сохранения и развития среды (части среды), как целого;

    6) оценка эффективности нового знания, полученного с применением определенного комплекса «цели, ресурсы, ограничения, методы», в смысле критериев разрешения проблем выживания, сохранения и развития среды (части среды), как целого и выбор данного сочетания, если достигнута удовлетворительная оценка. Если оценка эффективности неудовлетворительна, то происходит переход к этапу

    7) координация осуществления (повторения) процессов 1–4, 5,6.

    Прикладное исследование также описывается моделью целенаправленного процесса деятельности:

    1) формулирование комплекса целей исследования, направленных на применение некоторого определенного нового знания для практического разрешения конкретной проблемы выживания, сохранения и развития среды (части среды), как целого;

    2) определение комплексов наличных ресурсов производства и потребления данного нового знания для практического разрешения данной проблемы выживания, сохранения и развития среды (части среды), как целого;

    3) установление комплексов ограничений на цели, ресурсы, методы производства и потребления предлагаемого нового знания для практического разрешения конкретной проблемы выживания, сохранения и развития среды (части среды), как целого;

    4) формирование проекта производства исследования в виде совокупности комплексов «цели, ресурсы, ограничения, методы» применения нового знания для практического разрешения конкретной проблемы выживания, сохранения и развития среды (части среды), как целого;

    5) применение определенного комплекса «цели, ресурсы, ограничения, методы» применения нового знания для эксперимента по практическому разрешению конкретной проблемы выживания, сохранения и развития среды (части среды), как целого;

    6) оценка эффективности применения нового знания, полученного по окончании эксперимента с применением определенного комплекса «цели, ресурсы, ограничения, методы», в смысле критериев разрешения конкретной проблемы выживания, сохранения и развития среды (части среды), как целого и выбор данного комплекса, если достигнута удовлетворительная оценка. Если оценка эффективности неудовлетворительна, то происходит переход к этапу

    7) координация осуществления (повторения) процессов 1–4, 5,6.

    Одним из результатов исследования может быть исходная информация для составления или уточнения задания на осуществление последующих процессов целостной деятельности – производства, управления, экспертизы и т.д. В результате исследования могут также появиться дополнительные условия проведения анализа, в связи с чем анализ может быть осуществлен вновь.

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) исследование целостных операций. Направлено на разработку и применение методов нахождения целостных результатов для наилучшего решения проблем выживания, сохранения и развития целого и целостного в различных областях человеческой деятельности;

    2) объяснительное целостное исследование – исследование, направленное на проверку и углубление определенных аспектов системной философии с использованием результатов наблюдений над практикой актуализации и решения проблем целостности и целого;

    3) описательное целостное исследование – исследование, направленное на описание характеристик аспектов практики актуализации и решения проблем целостности с позиций системной философии;

    4) поисковое целостное исследование – исследование, ориентированное на обнаружение новых факторов целого и целостности, которые необходимо учитывать в методе системной философии;

    5) полевое целостное исследование – сбор первичных данных о целостности носителя проблемы, производимый в условиях практической актуализации проблем (по выбору) развития;

    6) маркетинговое целостное исследование – исследование, направленное на получение информации, необходимой для производства и потребления результата разрешения проблемы целостности.

    Все описанные нами составляющие целостного исследования, как и собственно целостное исследование, являются целенаправленными процессами, к описанию которых можно применить общую модель целенаправленного процесса, описанную в предыдущем разделе настоящей главы.

    Целостное проектирование. Целостный проект — модель целостного результата, реализация которой дает возможности регулярного разрешения проблемы выживания, сохранения и развития носителя проблемы, как целого, целостности. Проект представляется в виде рабочего проекта – комплекта проектной документации, состав, порядок разработки, согласования и утверждения которой регламентируется (или должно в будущем регламентироваться) соответствующими нормативно-правовыми документами. Начало реализации проекта осуществляется путем конструкторской и технологической подготовки производства и потребления результата, являющихся стадиями процессов производства и потребления результата. Конструкторская подготовка заключается в разработке комплекта конструкторской документации, описывающей результат, как целую и целостную совокупность частей, удовлетворяющую условиям системной философии. Технологическая подготовка заключается в разработке комплектов технологической документации, описывающих технологии производства и потребления, как целые и целостные системные технологии, удовлетворяющие условиям системной философии и направленные на регулярное разрешение проблемы целостности носителем проблемы.

    Стадии проектирования – анализ, исследование, эскизное проектирование, рабочее проектирование результата.

    Анализ как стадия целостного проектирования, проектный анализ, использует результаты целостного анализа и рекомендации целостного исследования, а также характеристики конкретных производителей и потребителей результата.

    Исследование как стадия целостного проектирования, проектное исследование, использует результаты и рекомендации целостного исследования, анализа на стадии целостного проектирования, а также характеристики конкретных производителей и потребителей результата.

    Эскизное (концептуальное) проектирование — разработка целостной концепции проектных решений по конструкции результата и технологии его производства, удовлетворяющей условиям системной философии, с учетом выводов и рекомендаций проектного анализа и проектного исследования, а также с учетом основных особенностей возможных производителей и потребителей результата, как целых и целостных.

    Рабочее проектирование — разработка результата, как целостной совокупности составляющих его частей, основ системных технологий его производства и потребления с учетом выводов и рекомендаций проектного анализа, проектного исследования и эскизного проектирования, а также с учетом всех необходимых особенностей конкретных производителей и потребителей результата, как целых и целостных.

    Все стадии проектирования сопровождаются обоснованиями и расчетами объемов необходимых материальных, энергетических, финансовых, человеческих и иных ресурсов для производства и потребления проектируемого результата, а также оценкой эффективности решения поставленной проблемы целости и целостности носителя проблемы.

    Объектно-ориентированное целостное проектирование – методология целостного проектирования, основанная на анализе и исследовании объекта проектирования (результата в виде знания, товара, услуги), а также его производства и потребления, как сложных систем, каждая из которых представляется несколькими целыми и целостными моделями. Из этих моделей на этапе рабочего проектирования выбирается по одной модели результата, производства и потребления и все эти три модели соответствуют одной общей модели целой и целостной системы.

    Организационное целостное проектирование – процесс разработки проектов целостного управления.

    Типовое целостное проектирование – разработка проектов, использующих типовые проектные решения для реализации постулатов, правил, Законов, принципов и моделей с использованием типовых этапов целостного подхода к проектированию.

    Социальное целостное проектирование – создание целостного проекта социального результата, производство и потребление которого дает возможности регулярного разрешения определенной проблемы выживания, сохранения и развития носителя проблемы, как целой и целостной части социальной среды.

    Целостная экспертиза. Экспертиза – в широком смысле – специальное исследование точно сформулированного вопроса, требующее специальных знаний и представления профессионально мотивированного заключения (лат. expertus – опытный).

    Целостная экспертиза, экспертиза целостности, цельности – специальное компетентное исследование деятельности и носителя деятельности, как целого и целостного, завершающееся представлением мотивированного заключения о соответствии деятельности и носителя деятельности положениям системной философии. Привлечение эксперта необходимо, если для разъяснения возникающих вопросов требуются специальные познания в определенной сфере деятельности. Как правило, привлечение эксперта, рамки поставленных перед ним вопросов и заключение эксперта регламентируются соответствующими нормативно-правовыми актами. Эксперт осуществляет свою работу, как правило, на договорной основе. Наиболее известные экспертизы: биологическая, бухгалтерская, врачебно-трудовая, криминалистическая, образовательная, оценочная, патентоведческая, пожарно-техническая, проектная, психиатрическая, сельскохозяйственная, социальная, строительно-техническая, судебная, судебно-автотехническая, финансовая, экологическая, экономическая, по технике безопасности и др.

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) разработка общей модели целостной врачебно-страховой экспертизы. Врачебно-страховая экспертиза рассматривается, как медицинское освидетельствование лиц с целью выявления у них заболеваний, которые могут повысить вероятность наступления страхового случая по сравнению с вероятностью страхового случая, соответствующей принятому в страховой компании уровню страхового риска.

    2) разработка общей модели целостной географической экспертизы. Географическая экспертиза рассматривается, как исследование проекта, которым предусмотрено прямое или косвенное влияние на окружающую среду с целью географического прогноза изменений состояния окружающей среды, возможных при реализации исследуемого проекта.

    3) разработка общей модели целостной культурологической экспертизы. Культурологическая экспертиза рассматривается, как исследование состояния культуры нации с целью прогноза ее развития под влиянием возможной реализации глобальных, региональных, национальных проектов.

    4) разработка общей модели целостной оценочной экспертизы. Оценочная экспертиза рассматривается, как исследование имущества и прав на имущество владельца имущества и определение рыночной стоимости этих прав на момент оценки с учетом состояния имущества и целей использования прав на имущество, указанных в задании на оценочную экспертизу.

    5) разработка общей модели целостной экспертизы художественного произведения. Экспертиза художественного произведения рассматривается, как исследование художественного произведения, а также прав на него владельца произведения. Завершается составлением заключения о состоянии произведения и заключения о рыночной стоимости прав владельца на момент оценки с учетом состояния произведения и целей использования прав на произведение, указанных в задании на экспертизу.

    4.4. Общая математическая модель целостной и целой системы

    Для каждого конкретного применения системной философии необходима своя общая модель целостной и целой системы, с помощью которой можно разработать методики выполнения условий системной философии – ее Принципов, правил, Законов, постулатов целостного метода. Построение такой модели производится путем объединения необходимых для данного случая моделей процессов и структур деятельности с помощью общей математической модели в виде алгебраической системы. Рассматриваемая в данном разделе общая математическая модель целостной системы[111] представляет собой, по сути ядро общей модели целостной и целой системы. Для удобства и краткости рассмотрения мы будем рассматривать данную модель в аспекте системной технологизации.

    Элементы и элементарные процессы. Процесс системной технологизации является ключевым процессом общественного производства и для индустриального и для постиндустриального общества. Для формализации этого процесса необходимо решить задачу построения математической модели общей системы, которая может быть эффективно использована при системной технологизации любых систем, независимо от того, к какому виду ресурсов относится изделие или продукт системы (управленческое решение, знания и умения обученных специалистов и т.д.), какими конкретными способами оно изготавливается, какими функциями времени и состояния системы описываются преобразования ресурсов (как изготавливается станок, формируются знания и умения обучаемых, как вырабатывается управленческое решение и т. д.). Разработка комплекса технологических способов и средств воздействия на перерабатываемые ресурсы с целью изготовления изделия для конкретных систем с использованием предлагаемых моделей – это вопросы прикладного исследования в каждом конкретном варианте системной технологизации. Основа для такой разработки – метод системной технологии и его приложения, изложена в других разделах данной работы.

    • В любой системе, если ее трактовать как технологическую систему, содержатся человеко-машинные элементы, каждый из которых может реализовать некоторую элементарную часть системного технологического процесса изготовления изделия системы (напр., элементарный процесс изготовления детали прибора). Этому элементарному процессу соответствует некоторая элементарная цель (напр., обеспечить параметры детали прибора).

    Элемент системы реализует достижение одной и только одной элементарной цели. Если его расчленить (например, отделить токаря от токарного станка или преподавателя – от аудитории), то он не может реализовать процесс достижения элементарной цели в данной системе.

    Кроме этого, в системе должны быть реализованы процессы складирования и транспортирования (процессы коммуникаций) перерабатываемых ресурсов, обеспечивающие взаимодействия между человеко-машинными элементами системы во времени (склад) и в пространстве (транспорт). Понятия склада и транспорта двойственны. Транспорт это «склад на колесах», «динамический склад» и к его функционированию предъявляются требования в виде ограничений по времени. Склад это «статический транспорт» и к его функционированию предъявляются требования в виде пространственных ограничений (например, по объему запасов).

    Для реализации элементарных процессов взаимодействия системе необходимы элементы взаимодействия. Элемент взаимодействия обеспечивает взаимодействие между двумя и только между двумя элементами системы. Также, как и элемент системы, он не может быть расчленен на части, способные обеспечить элементарный процесс взаимодействия в данной системе.

    В результате можно заключить, что технологическая система содержит два вида элементов. Первый вид – основной целенаправленный элемент, обеспечивающий основной процесс изготовления изделия (знания, товара, услуги), ради которого, собственно и создается система. Этот элемент мы называем, как «элемент системы». Второй вид – коммуникационный, транспортно-складской, дополнительный элемент, для обеспечения взаимодействия между основными целенаправленными элементами. Необходимость в нем появляется по той причине, что элементы системы требуют организации взаимодействия во времени (так как их функционирование «расписано во времени») и в пространстве (так как они имеют разные пространственные координаты). Этот элемент мы называем, как «элемент взаимодействия».

    • Сформируем, на основе изложенного, «элементарную часть» математической модели общей системы S. Математическую модель системы определим в теоретико-множественных терминах. Такой подход позволит применять наименее структурированные и наиболее широко понимаемые понятия, на основе которых можно применять метод системной технологии, наделив элементы множеств и отношения между ними конкретными свойствами.

    Примем, что: система – это множество упорядоченных элементов системы, осуществляемых ими элементарных процессов и причинно-следственных отношений между ними. Упорядочение элементов и «физическая» реализация причинно-следственных отношений в виде элементов взаимодействия производится в соответствии с выбранной технологией достижения цели, которая связана с изготовлением изделия системы. Элементы и элементарные процессы неделимы в смысле достижения цели системы.

    Элементарным процессом достижения цели в назовем процесс достижения одной и только одной элементарной цели, в ? В?. Здесь В? множество всех элементарных процессов достижения цели, используемых в данной системе.

    Целенаправленным элементом системы или просто элементом системы а назовем часть системы, осуществляющую один и только один элементарный процесс достижения цели, а ? А?, Здесь А? множество всех элементов, которые используются для построения данной системы. В А? допускается «рождение» – появление новых элементов и «смерть» – выбытие элементов.

    Элементарным процессом взаимодействия d назовем процесс взаимодействия между определенными двумя и только между этими двумя элементарными процессами достижения цели системы, d ? D?. Здесь D? – множество всех элементарных процессов взаимодействия в системе.

    Элементом взаимодействия е назовем элемент, предназначенный для осуществления одного и только одного элементарного процесса взаимодействия, е ? Е?. Здесь Е? – множество всех элементов взаимодействия, которые используются для построения данной системы. В Е? также допускается «рождение» и «смерть» элементов. Иногда удобно будет считать, что элементы е содержат ключ, имеющий только два логических состояния: «взаимодействие разрешено» и «взаимодействие исключено»; это может облегчить описание перехода от одного варианта модели системы к другому.

    Элементарной целью f0 назовем цель, достигаемую каким-либо одним элементарным процессом достижения цели, f0 ? F?. Здесь F? – множество множеств целей системы S, соответствующих всем возможным изделиям и продуктам системы (и их модификациям); множество SF? — множество всех потенциально возможных продуктов (изделий) системы и их модификаций. Множество F ? F? соответствует одному из изделий SF системы S. Надо отметить, что в большинстве своем технологические системные процессы по замыслу строятся, как процессы поочередного достижения цели систем «по частям». Например, по отдельности изготавливаются детали и блоки прибора. Соединение их в прибор, т.е. в систему-изделие, приводит к достижению цели, которая не может быть описана, как математическая функция с аргументами в виде элементарных целей (с помощью «дерева целей», напр.) и описывается только понятием целого: свойства прибора, (достижение которых было целью данной технологии), как целого «больше», чем любая комбинация свойств частей прибора, как элементов целого.

    Будем рассматривать только тот случай, когда все множества A?, B?,D?, E?, F?, S? конечны. Пересечение каждой пары множеств А?, В?, D?, Е?, F?, S? представляет собой конечное пустое множество.

    Модель полной системы. Полной системой S назовем совокупность взаимосвязанных элементов a ? A, е ? Е (A ? A?, E ? E?) и осуществляемых ими элементарных процессов в ? В, d ? D (B ? В? D ? D?), предназначенную для достижения цели F, связанной с выпуском определенного изделия (продукта) SF, SF ? SF?, F ? F?.

    Модель полной системы (математическую модель полной системы) S определим, как конечную алгебраическую систему

    S= < { A, В, D, Е }, W, ? >,

    состоящую из множества-носителя {А, B, D, Е}, множества операций W={W1, W2, ..., Wl } и множества предикатов ?={?1, ?2, ..., ?r}.

    Для описания всех необходимых взаимосвязей в модели системы (4.4.1) используем два множества: W? и ??. Множество W? является множеством всех операций, используемых при анализе и синтезе всех моделей S из множества S?. Множество операций W используется для определенной модели S. Множество S? – это множество моделей системы S, причем каждая модель S отражает одну технологию изготовления одного изделия, выпуска одного продукта (или его модификации). Множество W? может содержать теоретико-множественные операции объединения, пересечения и другие.

    Множество ?? содержит предикаты, используемые для описания отношений на множествах-носителях всех моделей системы. Множество главных предикатов ? содержит предикаты ?1-?r, определяющие отношения связи на {A, В, D, E}, которые должны соответствовать цели F изготовления «изделия SF», F ? F?, SF ? SF?. Переход от модели системы S для одной технологии изготовления изделия к модели другой технологии осуществляется путем замены одной совокупности A,B,D,E,W,? на другую. Используя эти совокупности для технологий изготовления всех изделий, можно составить множество S? всех моделей S данной системы, S ? S?..

    • В модели (4.4.1) для конкретной реализации системы S, значение предиката ?j ? ? равно 1 (истинно), если взаимосвязи между элементами множества-носителя соответствуют выбранной технологии изготовления изделия. Множество главных предикатов ? описывает взаимосвязи, необходимые для конкретной реализации S. Минимально необходим, независимо от природы системы, набор предикатов, устанавливающих такое подмножество отношений взаимосвязи, которое можно представить связным подграфом, без петель, покрывающим все вершины графа отношений. Кроме того, с помощью элементов множества ? и введения дополнительных предикатов можно описать различные технологические маршруты изготовления узлов и блоков, сборки изделия, подготовки документов, разработки проектов, изготовления управленческого решения и т.д. Переход от модели изготовления изделия F к модели для изготовления другого изделия осуществляется путем замены множества главных предикатов ? на другое. Реализовать необходимые переходы от одной модели к другой можно установлением набора состояний «взаимодействие разрешено» и «взаимодействие исключено» в элементах е ? Е.

    • В процессе формирования конкретной модели системы используются операции множества W (напр. при декомпозиции системы), состав которого определяется в зависимости от задач анализа и синтеза системы. Во многих важных приложениях достаточно, если множество-носитель образуете с W решетку или алгебру Кантора.

    Формирование конкретной модели системы с определенным набором элементов из {A, B, D, E} и множества ? может производиться следующим образом. Будем считать, что множества A?, B?, D?, E? определены, как наборы элементов, пригодных для всех возможных конкретных реализаций S.

    Вначале устанавливается некоторое отношение на множестве B?, т.е. выбираются и упорядочиваются процессы b ? В, B ? B?. Тем самым упорядочивается набор элементарных процессов достижения цели, который должен обеспечить системный процесс достижения цели, для реализации которого, в данном случае, нужна система S. Одновременно устанавливается необходимость обеспечения взаимодействий для пар процессов из В?, определяются требования к элементарным взаимодействиям со стороны каждого процесса b, b ? В?.

    Затем устанавливается отношение на паре множеств В?, A?, определяются и упорядочиваются основные элементы из А?, обеспечивающие выбранный набор процессов из В?, А ? А?, В ? В?.

    Параллельно устанавливается некоторое отношение на паре множеств В?, D? и определяется набор элементарных процессов взаимодействия d? D, D ? D?, обеспечивающих взаимодействие между элементарными процессами b, b ? В. При этом, для учета ограничений на элементарные процессы d ? D со стороны элементов множества А, устанавливается отношение на паре A, D.

    И, наконец, устанавливаются отношения на паре D?, Е?, позволяющие сформировать набор элементов е ? Е, E ? E?, которые войдут в данную реализацию системы. Для учета ограничений на элементы е ?Е со стороны элементов множеств А и В должны быть установлены соответствующие отношения на парах А, Е и В, D.

    • В процессе формирования модели конкретной реализации S описанная последовательность многократно повторяется и образует, в конечном счете, системный процесс достижения цели (модель которого описана в разделе 4.2) в некоторой системе-субъекте по созданию системы S. В качестве ресурсов выступают описания возможностей использования различных видов ресурсов для достижения некоторой глобальной цели, поставленной перед создаваемой системой; в качестве методов выступают описания различных процессов, которые можно реализовать для достижения цели.

    Вначале описывается глобальная цель создания системы (этап 1), затем возможные виды ресурсов для построения элементов системы (этап 2), далее – процессы использования ресурсов (этап 3), которые можно реализовать в системе и ограничения (этап 4), накладываемые на цель, ресурсы, процессы. Затем выбирается конкретный процесс использования ресурсов для достижения цели (этап 7), процесс апробируется (этап 5), оценивается (этап 6). Если не возникает необходимости создания системы, то найденный процесс используется для достижения глобальной цели. Но в большинстве случаев оказывается, что имеющиеся ресурсы позволяют достичь глобальную цель только в виде процесса последовательного достижения ряда частных целей. Поэтому на следующих циклах производится преобразование глобальной цели в систему F локальных (на уровне подсистем) и, далее, элементарных целей (на уровне элементов) (этап 1); тогда этапы 2,3,4 будут заключаться в создании системы S на множествах элементов из имеющихся ресурсов и элементарных процессов с учетом ограничений, этапы 5,6,7 будут заключаться в анализе вариантов конкретной реализации системы. В результате на некотором уровне элементарности будут сформированы множества типа {А, B, D, Е}, описывающие модели конкретных реализаций системы для различных целей, соответствующих различным возможным изделиям и продуктам системы.

    • В соответствии с принципом системности можно определить, в данном случае, что создаваемая система S является системой-объектом S0, система целей F, описывающая изделие системы, является системой-результатом SF Для моделирования системы-объекта и системы-результата должна использоваться одна модель общей системы (4.4.1).

    Таким образом, предлагаемый подход позволяет проводить исследование F и S по отдельности, учитывая отношения взаимосвязи, которые устанавливает между ними создающая система – субъект Sc.

    Отношения взаимосвязи, которые установятся в результате, между элементами систем F и S, обозначим через ?i и ?i-1, I ? {A, B, D, E}.

    • Модели F и S и множества A, B, D, E описывают ряд взаимосвязей, которые некоторая создающая система устанавливает для конкретной реализации S. Так, отношение взаимосвязи ?, ? ? A ? B, описывает тот факт, что каждый элемент системы аi, ai ? A, реализует один и только один элементарный процесс достижения цели bi, bi ? В. В свою очередь, отношение а-1 описывает взаимосвязи такого вида: элементарный процесс достижения цели bi ? B, реализуется одним элементом ai ?A. Аналогичным образом описываются все остальные взаимосвязи.

    Модели процесса и структуры. В общем случае каждому элементу ai из А соответствует некоторое подмножество элементарных процессов взаимодействия Di ? D, через которые ai воздействует на другие элементы множества А. Каждому элементу aj из А соответствует также некоторое множество элементарных процессов взаимодействия Dj ? D, через которые aj подвергается воздействию других элементов из А. Пересечение Di ? Dj = Dij множество элементарных процессов взаимодействия, через которые ai воздействует на aj (для упрощения в дальнейшем примем, что Dij — одноэлементные множества: Dij = {dij}). В противном случае соответствующее обстоятельство будем специально оговаривать. Будем считать, что аналогичным образом выделены подмножества элементов Ei, Ej, Eij, обеспечивающие, соответственно, множества процессов взаимодействия Di, Dj, Dij. Будем считать, что главным предикатам ?1-?r соответствуют отношения ?A, ?B, ?D, ?E строгого частичного порядка и отношения ?, ?-1, ?, ?-1, ?, ?-1, ?, ?-1, ?AF, ?-1AF, ?-1BF, ?DF, ?-1DF, ?EF, ?-1EF. Предположим, что на всех моделях, как полной системы, так и ее частей (основная и дополнительная системы, структура и процесс системы) сохраняются главные операции W.

    • Сформируем теперь модели процесса и структуры системы. Далее, если это не требует специальных разъяснений, все дальнейшее изложение будем вести для модели конкретной реализации системы с набором главных предикатов ?; множества А, В, D, Е линейно упорядочены; для описания связей выберем отношения ?, ?, ?, ?, ?в, и, соответственно, ?-1, ?-1, ?-1, ?-1, ?-1в. Для описания взаимосвязи с F выберем отношение ? вf. Выбор такого набора отношений соответствует наиболее распространенной схеме формирования системы, уже описанной в начале раздела в виде процесса достижения цели, когда для достижения системы целей F формируется множество элементарных процессов В. Будем считать, что главные предикаты ?1 + ?r описывают только выбранные бинарные отношения. Можно выбрать и другой набор отношений; при любом наборе отношений, устанавливающих взаимосвязи между всеми множествами А, В, D, E, F, будут справедливы результаты, полученные ниже.

    • Модели процесса и структуры системы определим в следующем виде. Процесс Р системы S (назовем его также полным системным процессом) — это множество взаимосвязанных элементарных процессов:

    P = < {B, D}, W, ?p >; ?р ? ?.

    Структура С системы S (назовем ее также полной системной структурой) — это множество взаимосвязанных элементов системы:

    С = < {A, E}, W, ?c >; ?с ? ?.

    • В соответствии с принятыми исходными положениями моделирования системы имеет место взаимнооднозначное соответствие между элементами множеств А и В. Взаимнооднозначное соответствие имеет место также между элементами множеств E и D. Следовательно, имеет место взaимнооднoзначное соответствие между элементами множеств-носителей в (4.4.2) и (4.4.3). Имеется также взаимнооднозначное соответствие между каждыми двумя упорядоченными парами (аi, ej) и (вi, dj), что однозначно следует из исходных положений описания с помощью сигнатуры ? целенаправленного процесса формирования модели (4.4.1). Следовательно, имеется взаимнооднозначное соответствие между элементами сигнатур и ?с, ?р ? ?с. Далее, любая операция из Wc, например, объединение элементов а, а ? А и е, е ? E, взаимнооднозначно соответствует такой же операции из Wp, т.е., в данном случае, объединению процессов в, в ? B и d, d ? D. Следовательно, Wp = Wc. Но так как Wp ? Wc, Wc ? W и W | {Wp ? Wc} = ?, то Wp = Wc = W. Итак, доказана следующая

    Теорема 4.4.1. Для модели системы S модели процесса Р и структуры С изоморфны.

    Модели полных, основных и дополнительных системных объектов. На основе (4.4.1)-(4.4.3) сформулируем следующий результат.

    Теорема 4.4.2. Модель полной системы S – это совокупность моделей процесса Р и структуры С:

    S = < P,C,?(?),?(?-1),?(?),?(?-1)>

    Полный процесс системы Р мы представляем как объединение основного процесса достижения цели Рa и системного процесса взаимодействия Ре. Хотя нами рассматриваются системы, создаваемые для реализации процесса, все результаты системной технологии могут быть применены для систем, предназначенных для реализации структуры. В системах, предназначенных для реализации системного процесса достижения цели, основные элементы системы а реализуют элементарные процессы достижения цели в. Но элементарные процессы достижения цели не могут объединяться в системный процесс Pа, минуя элементарные процессы взаимодействия d. Следовательно, необходимо описать вклад, вносимый элементарными процессами взаимодействия, в системный процесс достижения цели. Это участие не является целенаправленным, как в случае элементарных процессов достижения цели в, и, как правило, приводит к некоторому ухудшению Pa. Допустимое влияние элементарного процесса взаимодействия должно, видимо, заключаться в том, чтобы вносить какие-либо допустимые изменения в процесс достижения цели Pa при «передаче» предмета труда от одного элементарного процесса достижения цели вi к некоторому другому элементарному процессу достижения цели вj. Обозначим это допустимое изменение ?d — изменение результатов некоторого элементарного процесса вi при «передаче» предмета труда к некоторому другому «следующему» элементарному процессу вj. Множество этих изменений обозначим ?d, т.е. ?d ? ?d. Отсюда вытекает следующая теорема.

    Теорема 4.4.3. Каждый элементарный процесс взаимодействия d, d ? D, между некоторыми двумя элементарными процессами достижения цели вi и вj (вi, вj ? В) объединяет в себе собственно элементарный процесс взаимодействия d0 и элементарный процесс обеспечения ограничения ?d:

    d = { d0, ?d }; d0 ? D0; ?d ? ?d; D = { D0, ?d }.

    Системный процесс взаимодействия Рe, в свою очередь, реализуется в системе элементами взаимодействия е. Но элементарные процессы взаимодействия d, которые ими реализуются, не могут быть объединены в системный процесс взаимодействия без участия элементарных процессов достижения цели в. Участие элементарных процессов достижения цели в в процессе Pe (аналогично учету участия элементарных процессов d в процессе Pa) должно быть учтено введением ограничений на изменение характеристик элементарных процессов взаимодействия при «переходе» через некоторый элементарный процесс из В («обеспечение взаимодействия между элементарными взаимодействиями»). Множество этих ограничений обозначим , т.е. ?в ? ?в.

    Отсюда следует

    Теорема 4.4.4. Каждый элементарный процесс в, в ? В, реализуемый элементом а ? А, объединяет в себе собственно элементарный процесс достижения цели в0 и элементарный процесс обеспечения ограничения ?в:

    в = {в0, ?в }; в0 ? В0; ?в ? ?в, В = { В0, ?в }.

    Пересечения D0 ? ?d и В0 ? ?в не обязательно пустые множества.

    Полученные результаты и наличие взаимнооднозначных соответствий между элементами множеств А и В, а также между элементами множеств Е и D, соответственно, позволяют сформулировать следующую теорему.

    Теорема 4.4.5. Элементы а и е разложимы на части, реализующие части процессов в и d:

    а = {а0, ?a}; а0 ? A0; ?a ? ?a; А = {A0, ?a};

    e = { e0, ?е }; e0 ? E0; ?е ? ?e; E= { E0, ?e};

    В качестве обобщения сформулируем следующий результат.

    Теорема 4.4.6. Элементы а, е (а ? А, е ? Е) и элементарные процессы в, d (в ? В, d ? D) в модели системы S разложимы на части, образующие структуры Ca, Ce и процессы Рa, Ре основной Sa и дополнительной Sе систем.

    Следуя доказанному, сформулируем следующие результаты.

    Системный процесс достижения цели Рa представит собой объединения элементарных процессов достижения цели в0 и процессов обеспечения ограничений на допустимое изменение результатов элементарных процессов достижения цели ?d при передаче результатов одного элементарного процесса достижения цели к другому. Отсюда следует, что

    Модель основного системного процесса Рa имеет вид:

    Рa = < { B0, ?d }, W, ?p >.

    Системный процесс взаимодействия, в свою очередь, представит собой объединение элементарных процессов взаимодействия и процессов обеспечения ограничений на допустимое изменение характеристик взаимодействия при «передаче взаимодействия» через процессы достижения цели. Отсюда следует, что

    Модель дополнительного системного процесса Ре имеет вид:

    Ре =< { D0, ?a }, W, ?p >.

    Следуя (4.4.7) и (4.4.8), можно сформулировать следующие определения структур.

    Модель основной системной структуры Ca имеет вид:

    Ca = < { A0, ?e }, W, ?c >.

    Модель дополнительной системной структуры Сe имеет вид:

    Сe = < {?a, E0 }, W, ?c >.

    • Исходя из (4.4.4), где доказано, что система – это объединение процесса и структуры, определим основную и дополнительную системы.

    Модель основной системы Sa имеет вид:

    Sa = <{Pa, Ca }, W, ?>; Sa = <{A0, B0, ?d, ?e}, W,?>

    Модель дополнительной системы Se имеет вид:

    Se= <{Pe, Ce}, W, ?>; Se = <{?a, ?в, D0, E0}, W, ?>

    Другими словами, полная система S — это объединение полного системного процесса Р и полной системной структуры С, основная система Sa — это объединение системного процесса достижения цели Pa и структуры для его реализации Сa, а дополнительная система Se — это объединение системного процесса взаимодействия Pe и структуры для его реализации Ce.

    На основании этого можно получить следующие модели:

    C = < {A0, ?a, E0, ?e,}, W, ?c >,

    P = < {В0, ?в, D0, ?d }, W, ?р >.

    В полученных математических моделях разделены полные, основные и дополнительные системные объекты: системы, процессы, структуры, элементы и элементарные процессы.

    Элементарная система, элементарная структура и элементарный процесс. Элементы а, е представляют собой, по сути, элементарные структуры, а в сочетании с элементарными процессами они образуют элементарные системы – элементарные целенаправленные системы sa и элементарные системы взаимодействия se:

    sa= < {а, b }, ?, ?, ?0 >; sa = < a ? b, ?, ?0 >;

    se= < { e, d }, ?, ?, ?0 >; se = < e ? d, ?, ?0 >.

    Каждая i-ая система sai образует с некоторой системой seij элементарную полную систему sij, реализующую элементарную часть системного процесса достижения цели (т.е. реализующую преобразование предмета труда, начиная от момента поступления его на вход элемента аi и кончая моментом поступления его на вход элемента aj):

    sij=sai ? seij; sij= <{ai, bi, eij, dij}, wi, wij, фi, фij >,

    где wi, wij, фi, фij определяют операции и отношения на множестве-носителе системы sij, напр., операции ?, ? и отношения ?, ? и др. Число систем sij равно числу элементов aj, со входами которых соединен выход элемента ai.

    Цель fij, реализуемая системой sij, будет состоять из двух компонентов: цели fi, описывающей изменение параметров перерабатываемого ресурса в целенаправленной части sai системы sij и изменения ?ijfi происходящего во взаимодействующей части seij при транспортировании или складировании предмета труда до момента поступления на вход aj :

    fij = { fi, ?ijfi }

    Очевидно, что система sij имеет общую часть sai с каждой системой sik.

    Теорема 4.4.7. Система sij разложима на cистемы: основную целенаправленную saij и дополнительную seij:

    sij= saij ? seij;

    saij= < { ai0, bi0, ?еij, ?aij }, wj, wy, фi, фij >;

    seij = < {?ai, ?вi, dij0, eij0 }, wj, wy, фi, фij >.

    Справедливость (4.4.16) очевидна из предыдущего изложения.

    Теорема 4.4.8. Модели полной, основной и дополнительной систем S, Sa, Sе представляют собой теоретико-множественные объединения элементарных систем sij, sаij, sеij:

    S = < ? sij, W, ? >;

    Sa = <? sаij, W, ? >;

    Se = <? sеij, W, ?>.

    • В результате теоретико-множественного объединения sij, sаij, sеij сформируются множества-носители систем S, Sa, Se и, кроме того, объединение множества операций и отношений W' и ?', определенных на элементарных системах:

    S = < { А, В, D, Е }, W', ?', W0, ?0 >,

    Sa = < { A0, B0, ?d, ?e }, W', ?', W0, ?0 >,

    Se = < {?a, ?в, D0, E0 }, W', ?', W0, ?0 >.

    Множества операций W0 и предикатов ?0 формируются в процессе создания систем S, Sa, Se из элементарных систем: вводится отношение порядка ?, определяется набор предикатов и соответствующие отношения на множестве-носителе, отвечающие выбранным предикатам и т.д. В результате формируются множества W и ? систем S, Sа, Se: W=W' ? W0, ? = ?' ? ?0 и модели S, Sа, Se приводятся к виду (4.4.1).

    Изоморфизм и декомпозиция моделей. Изоморфизмом системы S на системы Sа, Se и др. будет взаимнооднозначное отображение множества-носителя системы S на множества-носители систем Sа, Se и др., сохраняющее главные операции и предикаты модели (4.4.1).

    Изоморфизм рассмотрим на графовых моделях систем, процессов, структур. Два графа G1 = G1(V1, H1) и G2= G2(V2, H2) считаются изоморфными, если существует взаимооднозначное отображение такое, что V1 взаимнооднозначно отображается на V2 и H1 взаимнооднозначно отображается на H2, т.е. каждой вершине из V1 соответствует одна и только одна вершина из V2 и наоборот, а каждому ребру из H1 соответствует одно и только одно ребро из H2 и наоборот, каждому ребру из Н2 соответствует одно и только одно ребро из Н1.

    Графы процессов и структур определим следующим образом:

    G (P) = G (B,D), G(Pa)=G(B0, ?d), G(Pe)= G(?в, D0),

    G( C) = G (A, E), G(Ca) = G (A0, ?e), G (Ce)=G(?a, E0).

    Сформулируем следующий результат.

    Теорема 4.4.9. Графы G(Р), G(С), G(Pa), G(Pe), G(Ca), G(Ce) изоморфны.

    Доказательство его следует из очевидного здесь факта: изоморфны между собой множества в каждой тройке множеств: В, В0, ?в; A, Aо, ?a; D, D0, ?d; E, E0, ?e.

    Графы систем определим следующим образом, как прямые суммы:

    G (S) = G (P) ? G ( C);

    G (Sa) = G(Pa) ? G (Ca);

    G(Se) = G(Pe) ? G(Ce).

    Теорема 4.4.10. Графы G(S), G(Sa), G(Se) изоморфны.

    Эти графы изоморфны, так как в соответствии с предыдущим результатом изоморфны их части, не пересекающиеся по вершинам и ребрам.

    Графы процесса и структуры также могут быть представлены в виде прямых сумм частей, не пересекающихся по вершинам и ребрам:

    G (P) = G(Pa) ? G (Pe); G(C) = G (Ca) ? G(Ce).

    В силу этого можно сформулировать

    Теорема 4.4.11. Графы G (S), G(Sa), G(Se), G(P), G(C) изоморфны.

    • Полученные результаты позволяют сформировать следующую процедуру декомпозиции при исследовании систем. Вполне очевидно, что переход от графа G (S) к графу G(Sa) или G(Se) означает переход от более сложных задач к более простым. В то же время модель любого системного объекта, в том числе Sa и Se, можно представить в виде модели полной системы и вновь разложить его на модели G(Sa), G(Se) и др. Новая декомпозиция будет означать дальнейшее упрощение задач исследования системы. В то же время при повторной декомпозиции модели, как и при первой., вновь будут определены отношения взаимосвязи между частями модели. Сохраняя отношения взаимосвязи на каждом этапе, можно перейти к системе с более простыми задачами исследования – к «простой» системе, задачи которой разрешимы для исследователя. Затем можно, используя отношения взаимосвязи, перейти к решению задач исходной системы, как к некоторой композиции задач «простых» систем. Возможно, что «простая» система – это система, в которой нецелесообразно выделение дополнительной системы.

    При такой декомпозиции не нарушается структура и процесс исследуемой системы, производится как бы расслоение системы. Образно можно определить, что это расслоение модели системы, декомпозиция «по толщине», возможная для математических моделей любых систем, когда каждая вершина и ребро графовой модели могут «расслаиваться» на две части в соответствии с определениями (4.4.5) – (4.4.7). Описанный способ декомпозиции вполне применим и в сочетании с известными методами.

    Алгоритм применения математических моделей. Рассмотрим на следующих примерах. Итак, в общем случае математические модели системы, процесса, структуры, элемента, элементарной структуры, элементарного процесса состоят из двух частей: одна основная, предназначена для реализации целей создания системы (Sa, Pa, Ca и др.), другая служит для обеспечения процессов взаимодействия в системе (Se, Pe, Ce и др.).

    Так, в технологической системе, создаваемой для реализации процессов отбелки хлопчатобумажных тканей, основными элементами а являются реакторы, в которых последовательно происходят процессы пропитки ткани различными растворами. Это процессы b — элементарные процессы достижения целей. Элементы взаимодействия е — это транспортирующие и складирующие элементы, обеспечивающие передачу обрабатываемой ткани от одного процесса пропитки к другому или её хранение до начала следующего процесса, т.е. элементы, обеспечивающие элементарные процессы взаимодействия d во времени и в пространстве.

    В тоже время в процессе обработки ткани также необходимо её транспортирование от начала элементарного процесса достижения цели к концу: для этого в основных элементах а, кроме основных частей конструкции а0, обеспечивающих протекание элементарных процессов отбеливания b0, предусматриваются транспортирующие механизмы , обеспечивающие прием ткани от транспорта (склада) на входе процесса, ее перемещение внутри аппарата в соответствии с технологией отбеливания и передачу ткани, прошедшей процесс, на последующие транспортно-складские средства, т.е. обеспечивающие элементарные процессы «взаимодействия между взаимодействиями» ?a.

    В транспортно-складских элементах взаимодействия е, в свою очередь, в процессе обеспечения взаимодействия между элементарными процессами отбеливания ткани, происходит изменение белизны ткани ?d, которое не должно превышать некоторого заданного значения, для этого в транспортно-складские элементы необходимо ввести соответствующие части конструкции ?a.

    В результате, технологический системный процесс достижения цели – заданной белизны ткани, сложится из элементарных процессов изменения белизны ткани b0 — целенаправленных процессов, происходящих в предназначенных для этого конструкциях а0 и процессов ?d «вынужденного» изменения белизны ткани, которые происходят в транспортно-складских элементах (в них обеспечивается ограничение изменений белизны ткани введением соответствующих частей конструкции ). В свою очередь, технологический системный процесс взаимодействия во времени и в пространстве – процесс складирования и транспортирования сложится из элементарных процессов транспортирования и складирования d0 и процессов .

    Те же соображения относятся и к структуре С данной технологической системы: часть ее Са, предназначенная для реализации технологического процесса отбеливания Pa сложится из элементов а0 и , обеспечивающих, соответственно, целенаправленные b0 и допустимые ?d изменения белизны ткани, другая часть структуры Се, предназначенная для реализации технологического процесса транспортирования и складирования Ре, сложится из элементов е0 и , обеспечивающих транспортирование и складирование d0 — между элементарными процессами достижения цели и ?в — в ходе этих процессов.

    • Если система, создаваемая для преобразования ресурсов (информационных, трудовых и т.д.), должна быть технологизирована, то ее модель должна соответствовать данной математической модели общей системы, принятой в системной технологии. Тогда в ней равнозначными явятся и основная и дополнительная системы. Так, в системах управления должна выделяться основная система, предназначенная для переработки информации с целью выработки управленческих решений, и дополнительная для обеспечения обмена информацией при осуществлении процессов выработки решений. В дополнительной системе осуществляются процессы сбора, хранения, предварительной обработки и доставки информации человеко-машинным элементам основной системы, которые, в свою очередь, осуществляют процессы выработки управления, управленческого решения. Недооценка простых задач дополнительной системы, связанных со складированием и транспортированием информации, приводит к несистемным решениям, отсутствию целостности систем управления, в них не выполняются принципы системности и технологизации. Так при создании промышленного технологического комплекса будет считаться грубейшей ошибкой, если не предусмотреть использование полезных изделий комплекса в сфере производства и потребления, не обеспечив это использование соответствующими средствами транспорта и склада.

    В то же время неполное использование изделий систем управления – управленческих решений, является довольно распространенным явлением. Основная причина заключается в том, что при проектировании систем управления внимание было уделено алгоритмам менеджмента, маркетинга, работе на рынке ценных бумаг, оптимизации структуры управления и т.д. Но при этом не рассматривались в полном объеме задачи регулярного оперативного, текущего, перспективного обмена информацией при осуществлении процессов принятия решения и при потреблении управленческого продукта. В существующих моделях систем управления задачи дополнительной системы не рассматриваются самостоятельно. Устранение подобных ошибок возможно на основе построенных математических моделей за счет поочередного и взаимосвязанного исследования полной, основной и дополнительной систем, полного системного процесса, а также системного процесса достижения цели и системного процесса взаимодействия, полной структуры системы, структуры для реализации процесса достижения цели и структуры для реализации процесса взаимодействия.

    • На основании полученных результатов можно сформировать ряд процедур, которые должны использоваться при построении конкретных алгоритмов по применению комплекса полученных моделей:

    Алгоритм применения математической модели общей системы должен содержать следующие правила и процедуры:

    а) рассматривать, в конечном счете, полную систему S с системой целей F. В частности, используя модель системных отношений для S и F, можно проверять условия системности, как условия соответствия моделей системы и её частей соотношениям (4.4.1) – (4.4.18). Процедуры решения отдельных задач анализа и синтеза необходимо проводить с помощью моделей основной Sa и дополнительной Se систем, объединяя затем эти задачи в рамках полной системы;

    б) решая задачи на модели основной системы Sа, необходимо поставить и решить задачу контроля дополнительной системы Se, имея в виду ее влияние на элементы и процессы достижения цели. В простейшем случае необходимо установить ограничения на элементы и процессы системы Se;

    в) решение задачи на модели дополнительной системы Se необходимо дополнить задачами контроля основной модели Sa, имея в виду ее влияние на элементы и процессы взаимодействия.

    • Использование рассматриваемой модели позволяет, напр., решать весь спектр инженеринговых задач построения опережающих решений по развитию производства и управления. Данная модель дает возможность создавать унифицированные и специальные модели бизнес-процесса всей производственной системы, а также бизнес-процессов ее частей, вплоть до ее элементов, элементарных бизнес-процессов и элементарных бизнес-структур анализа и исследований, производства и управления.

    4.5. Модель жизненного цикла целого

    • Жизненный цикл целого мы рассматриваем, как жизненный цикл триады «субъект-объект-результат». Триада «субъект-объект-результат», как мы установили в главе 1, наиболее цело – и целостносообразная целая совокупность частей среды М. При актуализации в среде М проблемы выживания, сохранения и развития, т.е. проблемы целостности, среда М производит анализ и исследование актуализировавшейся проблемы и приходит к некоторой идее решения актуализировавшейся проблемы в среде М с помощью определенного результата. Жизненный цикл триады деятельности «субъект-объект-результат» начинается с момента возникновения данной идеи результата.

    Как мы уже отмечали, и целостный процесс деятельности начинается с момента возникновения идеи решения актуализировавшейся проблемы в среде М с помощью определенного результата. Окончание – в момент признания данного результата непригодным для дальнейшего использования в смысле решения указанной проблемы. Триада рассматривается, как носитель целостного процесса деятельности. Целостный процесс деятельности осуществляется триадой и ее составляющими. Жизненные циклы триады и ее составляющих содержат концептуальные и реальные стадии. Так, результат представляет собой определенный предмет деятельности, преобразующийся от идеи до реального результата, потребляемого затем средой для решения некоторой проблемы целостности среды (части среды). Преобразование идеи до концептуальной формы реального результата (рабочего проекта результата) – предмет деятельности субъекта, как компонента данной триады. Осуществление производства результата в соответствии с его рабочим проектом и определенной технологией производства – предмет деятельности объекта, как компонента триады.

    Ранее всех компонент триады становится реальным, переходит от концепции к реальному осуществлению деятельности субъект триады. Затем становится реальным, переходит от концепции к реальному осуществлению деятельности объект триады. И в последнюю очередь переходит от концепции к реальному осуществлению своей деятельности, становится реальным результат триады. Пока часть триады находится в концептуальном состоянии ее выживание, сохранение и развитие – предмет деятельности некоторых субъектов деятельности, ранее сформированных средой, в том числе и субъекта триады. Когда часть триады переходит в реальное состояние, она обретает собственную цель выживания, сохранения и развития.

    • Модель жизненного цикла необходима для реализации правила жизненного цикла, рассмотренного нами в главе 3. Согласно указанному правилу «составляющие внешней и внутренней среды целого, как и собственно целое, могут находиться на разных стадиях своих жизненных циклов – от замысла до старения и вывода из сферы использования (эксплуатации), независимо от стадии осуществления деятельности целого. В связи с этим у составляющих внешней и внутренней среды целого может происходить смена моделей деятельности, что может нарушать целость и целостность рассматриваемого целого. В интересах целого необходимо изучение и использование моделей деятельности составляющих внешней и внутренней среды на разных стадиях их жизненных циклов».

    Правило жизненного цикла нами рассмотрено для составляющих внутренних сред части целого и собственно целого, а также внешней среды целого. Для реализации данного правила предложено комплексирование двух подходов – восприятия и воздействия, которые реализуется субъектом целой триады. Модель жизненного цикла рассмотрена нами в разделе 2.1 на частном примере искусственной системы, как состоящая из трех стадий – концептуальной, физический и постфизической. В общем случае модель жизненного цикла целой триады также состоит из трех стадий – концептуальной, физический и постфизической. На протяжении жизненного цикла триада и ее составляющие – субъект, объект и результат, осуществляют целостные процессы деятельности – анализ, исследование, проектирование, производство, управление, экспертиза, разрешение, контроль, архив. Кроме того, на разных стадиях жизненного цикла триада или ее составляющая может быть описана разными моделями систем – как постоянная или временная, как стабильная или нестабильная и т.д. Все эти составляющие жизненного цикла целой триады – концептуальная, физическая и постфизическая, а также модель целостного процесса деятельности подробно описаны в предыдущих разделах.

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) разработка общую модель целенаправленных процессов деятельности для субъекта деятельности в триаде деятельности;

    2) разработка моделей жизненных циклов триады и ее составляющих – субъекта, объекта и результата, описание их взаимосвязи;

    3) анализ моделей триады и ее составляющих на разных стадиях жизненного цикла с помощью определений систем, классификация которых приведена в разделе 2.1;

    4) разработка методик реализации Принципа и Закона целостности, а также Принципов и Закона развития целого на разных стадиях жизненного цикла триады и ее составляющих;

    5) анализ возможностей реализации постулатов целого и целостности на разных стадиях жизненного цикла триады и ее составляющих;

    6) разработка методик применения комплекса подходов восприятия и воздействия для реализации правила жизненного цикла с применением модели жизненного цикла, состоящей из трех стадий – концептуальной, физический и постфизической;

    7) разработка методик применения модели целенаправленного процесса деятельности для описания жизненного цикла триады и ее составляющих.

    • Для примера приведем описание жизненного цикла системы государственного управления[112] . Общая модель жизненного цикла системы, как мы уже установили, содержит концептуальную, физическую и постфизическую стадии. Применим указанную модель к описанию жизненного цикла системы государственного управления. Государственную систему управления рассмотрим также и как искусственную систему, т.е. как систему, созданную человеком. Такая система является системой-результатом (изделием, продуктом) в некоторой системной триаде «объект-субъект-результат». В свою очередь, жизненный цикл системы-результата, как любого продукта деятельности, содержит концептуальную, физическую и постфизическую стадии.

    Концептуальная стадия содержит совокупность следующих фаз «предфизической» жизни системы государственного управления:

    – формирование, исследование, описание новых потребностей общественного производства в будущей триаде государственного управления «объект-субъект-результат» (напр., потребностей в новой региональной системе государственного управления, возникающих в связи с изменением региональной политики);

    – формулирование и количественное описание целей (одной из целей), возникающих в общественном производстве в соответствии с некоторой новой потребностью (это может быть комплекс целей государственного управления новым регионом);

    – комплексное или частичное (напр., экономическое, социальное или экологическое) исследование и обоснование государственной системы, необходимой для достижения цели (комплекса целей), связанной с удовлетворением новых потребностей общественного производства (это может быть технико-экономическое обоснование создания региональной системы государственного регулирования деятельности естественных монополий);

    – создание эскиза системы – анализ вариантов построения, выбор и проработка требований к будущей системе в виде задания на создание и реализацию проекта системы (это может быть задание на проектирование региональной системы государственного управления);

    – создание проекта системы – разработка всех деталей конкретного варианта воплощения системы, окончательный вариант обоснования системы и плана ее реализации, бизнес-плана (это может быть проект и бизнес-план местной системы государственного управления).

    На этой стадии модель будущей системы проходит фазы:

    – осознания необходимости создания системы – прообраз будущих характеристик системы (это может быть прообраз будущей местной системы государственного управления);

    – формального описания идеи ее построения – прообраз будущего процесса и структуры системы (это может быть предварительное описание функционального строения регионального государственного управления, структуры региональной государственной службы, ее учреждений и организаций);

    – плана и задания на ее создание (это может быть задание и план разработки региональной системы государственного управления);

    – эскизно-технического и рабочего проекта системы (это может быть полный проект региональной системы государственного управления).

    Одновременно могут создаваться компьютерные модели вариантов системы или ее частей для принятия решения по уточнению модели системы (напр., компьютерные модели регионального государственного управления).

    Общая задача – построение модели системы в виде проекта, которая, будучи реализована физически, обеспечит, с высокой степенью вероятности, более лучшее (в смысле конкретных критериев) достижение определенной цели во внешней среде по сравнению с другими альтернативами (например – построение наиболее эффективной региональной системы государственного управления).

    Физическая стадия содержит следующие фазы:

    – опытно-экспериментальная (это может быть экспериментальная отладка будущей региональной системы государственного управления на некотором комплексе функций управления);

    – производственная – изготовление системы в серийном или единичном производстве и поставка ее заказчику (оснащение региональной системы государственного управления всеми видами ресурсов и ввод ее в действие);

    – функционирование системы в соответствии с ее назначением во внешней среде до окончания срока морального или физического износа (напр., функционирование региональной системы государственного управления до появления новых концепций регионального устройства – моральный износ).

    На этой стадии производится:

    – маркетинг системы управления (включающий, напр., анализ со стороны вышестоящего уровня управления результатов функционирования региональной системы государственного управления);

    – модернизация системы (напр., разработка и использование новых прогрессивных видов управленческих решений и компьютерных технологий их формирования, принятия и реализации);

    – учет ошибок и внесение изменений в систему (напр., учет ошибок проекта и внесение изменений в структуру и функции регионального государственного управления);

    – актуализация информации (это может быть внесение изменений в компьютерные технологии региональной системы государственного управления);

    – предоставление услуг по улучшению функционирования системы (это может быть предоставление образовательных, научных, экспертных, консультационных и других услуг для развития профессионализма государственных служащих регионального государственного управления).

    Постфизическая стадия содержит следующие фазы:

    – вывод системы из обращения, изъятие из процесса эксплуатации в связи с моральным или физическим износом (напр., ликвидация определенной системы регионального государственного управления);

    – сохранение модели системы на бумажных и/или компьютерных носителях (напр., сохранение проекта и всего опыта функционирования данной региональной системы государственного управления);

    – использование хранимой модели системы для создания более совершенных систем аналогичного или сходного назначения (это может быть использование модели и опыта деятельности всех предыдущих систем регионального государственного управления страны для модернизации некоторой существующей системы регионального государственного управления).

    На этой стадии система управления вновь превращается в концептуальную систему, которую могут неоднократно использовать при создании новых моделей концептуальных систем управления.

    4.6. Модель грамотности и доступности

    • Модель грамотности и доступности способствует реализации положений системной философии во взаимодействии среды носителя актуализировавшейся проблемы со средой производства результатов для решения данной проблемы. Это взаимодействие для наглядности мы рассмотрим для результата триады «субъект-объект-результат». Ранее мы ее рассмотрели для частных случаев взаимодействия систем информатики, государственного управления, производственной системы со средой потребления результатов, производимых этими системами[113] .

    В общем случае модель грамотности и доступности содержит две подмодели: грамотности и доступности.

    Подмодель грамотности описывает требования, которым должен удовлетворять сфера потребления результата деятельности триады. Этих требований три:

    – первое требование: «профессиональная грамотность». Профессиональная грамотность, в данном случае, рассматривается как совокупность знаний, умений и навыков профессиональной «грамотной» технологии потребления конкретного результата триады носителем проблемы для разрешения исходной проблемы. Например, для потребителя результатов (изделий) систем информатики это требование наличия в среде профессиональной «грамотной» технологии потребления изделий систем информатики, напр., программных продуктов для решения, к примеру, проблемы подготовки управленческих решений. В отношении потребителя продукции государственной структуры – юридического или физического лица (напр., предприятия, банка, экономиста фирмы, индивидуального предпринимателя), это требование обладания профессиональной технологией грамотного применения результатов государственной политики, программы, проекта для решения проблем, целей и задач в сфере своей деятельности. Для потребителя продукции некоторого производства, как для носителя проблемы, это требование обладания профессиональными технологиями потребления продуктов определенной производственной системы (знаний, товаров, услуг) для решения проблем, целей и задач в сфере своей деятельности;

    – второе требование – это «нормативная грамотность». Это требование реализации Принципа целостности пары «среда производства результата – среда потребления результата», которая должна в формате данного требования описываться целостной системой норм профессиональной деятельности (установленных общепринятых правил, методов, моделей). Так, для среды потребления результатов систем информатики это требование применения наличия знаний, умений и навыков преобразования среды потребления данных результатов с помощью общепринятых норм профессиональной деятельности, характерных для информатики. Такими нормами для профессиональной деятельности в сфере информатики являются, например, обязательность знаний, умений и навыков использования моделей и методов дискретной математики, больших и сложных систем. По этой причине для постановки и решения конкретных профессиональных проблем, целей, задач в сферах управления, проектирования, прогнозирования и др. обязательно применение указанных методов и моделей, если, конечно, в этих сферах необходимо ориентироваться на информатизацию. Выполнение этого требования делает принципиально возможным применение изделий систем информатики для решения проблем в данной среде потребления. Его можно назвать требованием «математическая грамотность».

    Другой пример. Государство, как известно, единственный субъект национального управления, обладающий правом устанавливать общие правила поведения для всех субъектов общественного производства. По этой причине каждый человек должен знать нормативную правовую продукцию государства, регламентирующую все виды деятельности, которые он осуществляет. Другими словами, каждое юридическое и физическое лицо должно иметь знания, умения и навыки грамотного применения нормативной продукции государственных структур при формировании и решении конкретных проблем, целей, задач своей деятельности. И, если данное лицо начинает осуществлять свою деятельность в другой стране, то оно обязано руководствоваться государственными нормами этой страны, а также нормами и правилами профессиональной деятельности, общепринятыми конкретным профессиональным сообществом данной страны.

    Еще один пример. Каждый потребитель продукции производственной системы должен знать нормативные акты, регламентирующие потребление продукции данного производства. Другими словами, каждое юридическое и физическое лицо должно иметь знания, умения и навыки грамотного применения нормативных актов (правил, инструкций, положений, технических условий и т.п.), касающихся продукции данной производственной системы, для эффективного решения конкретных проблем, целей, задач своей жизнедеятельности. Во всяком случае, он должен уметь отличить их от рекламы;

    – третье требование – это «развивающая грамотность». Развивающая грамотность рассматривается как совокупность знаний, умений и навыков использования современных и будущих возможностей различных сфер производства результатов (знаний, товаров, услуг) для постановки и решения сегодняшних и будущих проблем своей среды деятельности, как среды потребления. Для сферы потребления продуктов информатики это требование можно сформулировать, как требование «компьютерной грамотности». Это знание и умение использовать современные и будущие возможности индустрии информатики в решении оперативных, текущих и перспективных профессиональных задач. Для сферы потребления продукции государства это «государственная грамотность» – знания, умения и навыки использования современных и будущих возможностей государственных структур для развития собственного потенциала, потенциала «своей части» общественного производства. Государство прилагает немалые усилия для совершенствования своего функционирования, для оптимизации своей структуры, а также для своего развития, соответствующего задачам выживания, сохранения и развития комплексного национального потенциала. Но не каждый гражданин страны и не каждое предприятие грамотно учитывают в своей деятельности информацию о структуре, функциях и направлениях развития государства. В то же время, очевидно влияние функционирования и тенденций развития государства на развитие общественного производства и любых его частей. По этой причине знание государства – грамотность в отношении структуры, функций, а также политик, программ и проектов развития государства, позволяет любому юридическому или физическому лицу грамотно выбрать модели структуры и функций деятельности, а также и направления своего развития. Государственная грамотность позволяет гармонизировать политику своей деятельности и своего развития с политикой государства. Если политика строения и функционирования, а также развития государства нас не устраивает, то каждое юридическое и физическое лицо имеет возможность, действуя в рамках закона, влиять на государство, добиваться гармонизации политики государства с политикой своего развития и развития общественного производства в целом. Характерный пример отсутствия государственной грамотности, в смысле данного требования, – действия населения стран СНГ в период распада СССР и перехода к капиталистическому пути развития стран СНГ. Население в своем большинстве оказалось неприспособленным к восприятию новых политик, программ и проектов развития государства, например, в отношении приватизации государственной собственности.

    Со своей стороны и к потребителю продукции производственной системы предъявляется требование «производственной грамотности» – знания, умения и навыки использования современных и будущих возможностей производственной сферы для развития собственного потенциала, потенциала «своей части» общественного производства. Производственные сферы прилагают немалые усилия для совершенствования своего функционирования, для оптимизации своей структуры, а также для своего развития, соответствующего задачам выживания, сохранения и развития комплексного национального потенциала. Но не каждый гражданин страны и не каждое предприятие грамотно учитывают в своей деятельности информацию о структуре, функциях и направлениях развития производства, например, образовательного или научного производства. В то же время, очевидно влияние функционирования и тенденций развития каждого производства на развитие сферы потребления и любых ее частей.

    В общем виде эти требования к сферам потребления со стороны сферы производства можно объединить под названием «ПНР-грамотность». В частных случаях эти требования к сферам потребления удобно объединять под специальными названиями – для продукции информатики – «ПМК-грамотность», к сферам потребления продукции государства – «ПНГ-грамотность», к потребителю продукции производства – под названием «ПНП-грамотность».

    Подмодель доступности описывает требования со стороны сферы потребления – сферы носителей проблем, которым должна удовлетворять сфера производства результатов, необходимых для решения проблем. Этих требований три:

    – первое требование – это «духовно-нравственная доступность». Духовно-нравственная доступность рассматривается как соответствие продукции сферы производства духовно-нравственным представлениям, господствующим в среде потребления; духовно-нравственный потенциал сферы потребления должен получать импульс органичного развития под влиянием новых продуктов сферы производства. Например, для систем информатики это требование можно сформулировать как «понимание человека». Это требование понимания продуктами и средствами информатики особенностей человеческого языка и психологии общения с человеком, как пользователем продукции информатики. Другими словами, индустрия информатики должна «подстраиваться под человека», препятствовать, напр., возникновению стрессовых ситуаций при общении с ЭВМ, не создавать угроз душевному здоровью пользователя.

    Для продукции государства требование духовно-нравственной доступности – это требование соответствия понятиям духовности и нравственности, канонам душевного здоровья, традиционным для народа страны, для его этносов. Продукция государства – это, как правило, сложные системы знаний, оказывающие сильное воздействие на человека, на духовно-нравственную систему, на состояние душевного здоровья общества. С другой стороны, продукция государства отражает духовно-нравственное состояние государства. По этой причине является обоснованным требование «понимания» продукцией государства особенностей языка и психологии общения с человеком, независимо от его этнической принадлежности, возраста, социального положения и от других особенностей, обоснованно отличающих граждан страны друг от друга. Государственная индустрия производства решений, законов и иных нормативных актов, программ, проектов, другой продукции должна «подстраиваться под человека», препятствовать, напр., возникновению стрессовых ситуаций при общении с продукцией государства, не допускать снижения уровня духовности и нравственности в обществе. Тогда его продукция будет доступна человеку с позиций духовности и нравственности. В противном случае происходит неположительное (отрицательное, иронически-безразличное и иное) восприятие обществом продукции государства.

    В свою очередь, продукция материального и энергетического, финансового и экологического, других производств оказывает воздействие на духовно-нравственную систему, на душевное здоровье человека и общества. С другой стороны, продукция производства отражает духовно-нравственное состояние производства. По этой причине является обоснованным требование «понимания» продукцией производства особенностей языка и психологии общения с человеком, группами людей, населением страны, региона. Производственная индустрия, также как и государственная, должна «подстраиваться под человека», препятствовать, напр., возникновению стрессовых ситуаций при общении с продукцией производства, не допускать снижения уровня духовности и нравственности в обществе. Конечно, желательно допускать в сферу потребления только ту продукцию сферы производства, которая обладает духовно-нравственной доступностью, т.е. допустима с позиций духовности и нравственности, с позиций ненанесения вреда душевному здоровью человека и общества;

    – второе требование – это «интеллектуальная доступность». Интеллектуальная доступность рассматривается как соответствие интеллектуального уровня продукции сферы производства интеллектуальному потенциалу среды потребления; интеллектуальный потенциал сферы потребления должен получать импульс органичного развития под влиянием новых продуктов сферы производства.

    Так, для информатики – это, во-первых, требование изучаемости, понятности для потребителя средней квалификации, желательно без посторонней помощи, самих продуктов и средств информатики, напр., конкретной компьютерной среды моделирования экономических процессов. Для удовлетворения данного требования в комплект поставки таких изделий могут придаваться автоматизированные справочные и обучающие системы. Во-вторых, это требование развития интеллектуального потенциала среды потребления за счет, например, компьютерной поддержки процессов принятия оптимальных проектных решений. Для продукции государства, напр., конкретного нормативного акта в области налогообложения, требование «интеллектуальной доступности» – это требование его изучаемости, понятности для человека, желательно без посторонней помощи. Другими словами, продукция государства должна по сложности построения и изложения должна быть доступна уровню интеллекта любого гражданина. Продукция государства должна соответствовать уровню образованности населения и должна сопровождаться специальными информационными мероприятиями, цель которых – сделать ее понятной любому жителю страны. Подобно этому должна быть интеллектуально доступна, т.е. изучаема, понятна для потребителя, желательно без посторонней помощи, продукция материального, энергетического и иного производства. Продукция производства также должна соответствовать уровню образованности населения и сопровождаться специальными информационными мероприятиями, цель которых – сделать продукцию производства понятной любому потребителю;

    – третье требование – это «физическая доступность». Физическая доступность рассматривается как возможность для носителя актуализировавшейся проблемы в любое нужное время и в любом необходимом месте воспользоваться нужными результатами сферы производства (знаниями, товарами, услугами) для решения данной проблемы. При этом обязательно условие содействия выживанию, сохранению и развитию носителя проблемы, а также условие отсутствия ущерба физическому здоровью носителя проблемы от потребления результатов сферы производства. Так, условие «физической доступности» это возможность в любое оговоренное время и в любом, заранее определенном месте, воспользоваться нужными изделиями и средствами информатики. Со своей стороны, государство обеспечивает возможность для любого гражданина в любое время воспользоваться нужными законами, иными нормативными актами, планами, программами, методическими указаниями и другой продукцией государства. Надо заметить, что на мероприятия по удовлетворению этого требования тратятся огромные средства. Это, например, средства на реализацию концепции открытого общества, по построению национальной информационной инфраструктуры, электронного правительства. Вполне очевидно также, что и при проведении инженеринга производства необходимо обращать особое внимание на систему формирования и реализации физической доступности продуктов производственной системы для каждого потребителя, групп потребителей, и, в целом, для общества.

    • Эти три требования сферы потребления к сфере производства можно объединить в виде аббревиатуры «ДНИФ-доступность»: духовно-нравственная, интеллектуальная, физическая доступность обществу продукции производства. Для удовлетворения изложенных требований необходимы соответствующие социальные системные технологии. Зачастую доступность продукции обеспечивается на уровне рекламы и PR-технологий, что, конечно, совершенно недостаточно. Такой подход может приводить к продвижению продукта, заведомо несоответствующего задачам выживания, сохранения и развития ДНИФ-потенциала[114] потребителя (ДНИФ-потенциал описывается в следующей главе). Потребление продуктов, не соответствующих требованиям «ДНИФ-доступности», может приводить также к снижению ДНИФ-потенциала общества и противоречить национальной идее, даже если она существует в неявно выраженном виде.

    В целом, комплексное удовлетворение требований «ПНР-грамотности» и «ДНИФ-доступности» возможно только при целостном подходе, который реализуется с помощью целостного подхода системной философии. Удовлетворение требований «ПНР-грамотности» и «ДНИФ-доступности» необходимо для получения целого и целостного результата (знания, товара, услуги) сферы производства, а также получения носителем проблемы целого и целостного решения актуализировавшейся проблемы.

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) разработка комплекса требований «ПНР-грамотности» и «ДНИФ-доступности» для следующих совокупностей «среда производства – среда потребления»: «высшее учебное заведение (сфера производства) – энергетика (сфера потребления)»; «жилищно-коммунальный комплекс (сфера производства) – товарищество собственников жилья (сфера потребления)»; «наука (сфера производства) – общеобразовательная школа (сфера потребления)».

    2) анализ соответствия требований «ПНР-грамотности» и «ДНИФ-доступности» условиям постулатов целости и целостности изделия системы информатики;

    3) разработка требований «ДНИФ-доступности» и «ПНР-грамотности» к управленческому решению в соответствии с условиями Принципа целостности;

    4) разработка требований «ПНР-грамотности» и «ДНИФ-доступности» к продукту экологического производства в соответствии с условиями Закона целостности;

    5) анализ конкретного примера (по выбору) выполнения требований «ПНР-грамотности» и «ДНИФ-доступности», как условия получения целостного решения проблемы экологически чистого питания;

    6) доказательство взаимодополняющего действия, в смысле обеспечения целостности деятельности, модели грамотности и доступности в совокупности с моделями целенаправленного процесса деятельности, общей моделью целостного процесса деятельности, моделью жизненного цикла целого;

    7) применение Принципа целостности моделирования при разработке комплекса требований «ПНР-грамотности» и «ДНИФ-доступности» для совокупности «общеобразовательная школа (сфера производства) – семья (сфера потребления)».

    4.7. Модель вложенности сфер деятельности

    • Как мы ранее установили, части среды в целях выживания, сохранения и развития объединяются в совокупности частей среды, которые могут преобразовываться в целые и целостные совокупности. Назовем, для удобства изложения, объединяющиеся части среды частями среды меньшего формата, а совокупности частей среды – частями большего формата. Часть среды, как известно из уже изученного материала, преследует два комплекса целей – собственные и миссионерские. Для части среды меньшего формата миссионерская цель состоит, в частности, в поддержании функционирования части большего формата. Способ достижения этой цели – осуществление целостностей первого и третьего типов. Для части большего формата важнейшей (в смысле собственной целостности и цельности) миссионерской целью является выживание, сохранение и развитие части меньшего формата. Способ достижения данной цели – осуществление целостности второго типа.

    Кроме этого, части среды обоих форматов преследуют и собственные цели (образовательные, научные, производственные, воспитательные, консалтинговые, экспертные и другие), оправдывающие их основное назначение. Но возможность и эффективность осуществления собственной основной деятельности части меньшего формата зависит от того, насколько эффективно действует часть большего формата в смысле указанной миссионерской цели. Часть меньшего формата находится в среде части большего формата, «вложена» в часть большего формата, «защищена» ею от разрушающих воздействий среды. Далее необходимо учесть, что каждая часть среды меньшего формата может быть вложена в несколько частей большего формата деятельности, ее деятельность реализуется «в оболочке» сфер деятельности большего формата.

    Принцип вложенности сфер деятельности можно сформулировать следующим образом: каждая деятельность реализуется в оболочке сфер деятельности большего формата, вложена в эту оболочку. Эффективность деятельности каждой сферы зависит от надежности и эффективности миссионерской деятельности сфер большего формата. Модели, отражающие Принцип вложенности сфер деятельности (модели вложенности сфер деятельности), описывают механизмы реализации постулатов целостности во взаимодействии частей среды меньшего и большего форматов.

    Рассмотрим Принцип и модели вложенности сфер деятельности на примерах.

    • Так, производственную систему, как и многие другие системы, можно, как известно, представить с помощью идей иерархического строения систем. Известно, в то же время, что модель в виде иерархии значительно упрощает проблему изучения производственной системы и не отражает многих сторон этой сложной проблемы. Но она позволяет наглядно представить взаимодействие уровней, слоев, сфер национальной производственной деятельности. Для более глубокого изучения можно представить взаимодействие национального производства, определенной производственной системы, подразделения производственной системы, специалиста путем применения Принципа и моделей вложенности сфер деятельности разного объема[115] .

    Первая сфера деятельности – сфера деятельности специалиста, предназначенная для решения его должностных проблем, целей, задач. Несколько большая по объему сфера – сфера производственной и управленческой деятельности подразделения производственной системы, предназначенная для решения определенного круга проблем функционирования производства. Более объемная сфера, с которой взаимодействует подразделение предприятия – сфера производственной и управленческой деятельности данной производственной системы в целом, предназначенная для решения определенных проблем общественного производства. Она, в свою очередь, включена в отраслевую сферу производственной и управленческой деятельности производств данного вида. Отраслевые сферы производственной деятельности являются составными частями производственной и управленческой сфер национального производства, предназначенного для разрешения проблемы развития комплексного национального потенциала.

    Сферы производства и управления меньшего формата «вложены» в производственные и управленческие сферы большего формата. Деятельность сфер большего формата создает условия для деятельности сфер меньшего формата. И этот принцип вложенности сфер производства и управления — основа для гарантий свободной и полезной деятельности каждой части общественного производства. Если каждая из этих сфер действует «как положено», то и специалист, и производственное подразделение, и фирма – производственная система, имеют возможности эффективного функционирования в сферах своих видов деятельности.

    Реализация принципа вложенности сфер национальной производственной деятельности и управления «держится» на духовности, нравственности, интеллекте, телесной системе, на физическом и душевном здоровье человека, семьи, фирмы, государственного регулирования экономики, нации. Другими словами, если к описанию принципа вложенности сфер деятельности применить Принцип системности деятельности, то мы установим, что общей моделью системы для описания взаимодействия вложенных сфер деятельности является модель ДНИФ-системы. Соблюдение принципа вложенности сфер деятельности и управления – основа для гарантий свободной и полезной деятельности каждого субъекта общественного производства.

    • Рассмотрим условие вложенности структур производственной системы.

    Покажем применение принципа вложенности сфер производственной системы при осуществлении двух моделей процессов производственной системы. В каждом производственном подразделении производственной системы, при производстве каждого продукта (знания, товара, услуги) в явной или в неявной форме используется модель процесса достижения цели, описанная нами в разделе 4.2. Следовательно, в структуре любой производственной системы имеются звенья, направленные на реализацию систем «Цель», «Ресурсы», «Метод», «Ограничения» и т.д. Эти структуры могут быть вложенными одна в другую, как подструктуры. Далее, в производственной системе в явной или в неявной форме используется обобщенная модель деятельности; поэтому в структуре любой производственной системы присутствуют аналитические, исследовательские и другие структуры, которые могут быть вложенными одна в другую, как подструктуры.

    В то же время, разные производственные системы и их части могут, для формирования оптимальной структуры, объединять свои структуры. Например, структуры «Анализ» и «Ресурсы» могут быть объединены в одну, или эти функции могут быть поручены структуре, не входящей в данную производственную систему (используя режим аутсорсинга, например). В этом случае условие вложенности структур метода системной технологии дает возможность моделировать для практики структуру производства производственной системы в виде совокупности «вложенных одна в другую» структур по производству знаний, товаров, услуг, управленческих решений, проектов, программ, политик развития производства. Так, система «Анализ», производящая аналитический проект, может быть вложена в систему «Исследования». Тогда система «Анализ» производит аналитическую часть исследовательского проекта.

    Использование условия вложенности структур позволяет, таким образом, построить процедуру оптимизации структуры создаваемой или реформируемой структуры производственной системы.

    Вложенность сфер национальной деятельности. Взаимодействие нации, государства, человека можно представить себе в виде взаимодействия сфер деятельности разного объема.

    Первая сфера деятельности – сфера деятельности человека, предназначенная для разрешения его проблем. Большая по объему сфера – сфера деятельности домашнего хозяйства, предназначенная для решения проблемы семьи. Более объемная сфера, с которой взаимодействует домашнее хозяйство – сфера деятельности фирмы, предназначенная для решения проблемы определенного производства. Она включена в сферу деятельности государства, предназначенную для разрешения проблемы государства. И государство, действующее (по замыслу) по поручению нации, находится в сфере национальной деятельности, ориентированной на разрешение национальных проблем. Если каждая из этих сфер действует «как положено», то и человек, и домашнее хозяйство, и фирма находятся в сферах своих видов деятельности. Сферы меньшего объема «вложены» в сферы большего объема.

    И этот принцип вложенности сфер национальной деятельности и управления — основа для гарантий свободной и полезной деятельности каждого субъекта национальной деятельности. Но если нация не имеет верных ориентиров, государство не выполняет своего предназначения, неправительственные организации бездействуют, а фирмы не приносят доходов своей стране, то в этом случае все эти проблемы приходят в сферы конкретного человека, его семьи и домашнему хозяйства. И если государство не решило вопросов национальной безопасности в своей сфере деятельности, то каждому боеспособному человеку придется брать в руки оружие и защищать границы своей страны. И если государство не решает вопросы личной безопасности юридического и физического лица, то каждый человек и каждая фирма должны сами защищать себя от преступности. И если государство не осуществляет механизмов реализации прав своих граждан на интеллектуальную собственность, то интеллектуальный потенциал нации уходит за пределы страны. И если крупный капитал начинает работать на благо другой страны, то человек решает вопросы своего жизнеобеспечения, роясь на помойках или, в лучшем случае, привозя и перепродавая своим согражданам знания, товары и услуги, бросовые и ненужные в других странах. Или живет на средства благотворительных организаций, совершенно не заинтересованных в полезности для нации результатов его труда. Причем эти средства – это мизерная часть того, что соответствующие страны зарабатывают на нашей стране. В результате все сферы национальной деятельности сужаются до масштабов деятельности одного человека, одной семьи.

    Конечно, взаимодействие и внутренняя структура всех сфер жизнедеятельности нации и национального управления (да и сама геометрия «сфер») имеют гораздо более сложную структуру. Но принцип вложенности сфер деятельности и управления должен быть реализован во всех видах структур выживания, сохранения и развития нации, семьи, человека. Для обеспечения и защиты права человека и семьи строить свое благосостояние и экологическое благополучие создаются все «внешние сферы». Реализация принципа вложенности сфер национальной деятельности и управления «держится» на духовности, нравственности, интеллекте, телесной системе, на физическом и душевном здоровье человека, семьи, фирмы, государства, нации, т.е. на восприятии ими модели ДНИФ-системы.

    Для эффективного формирования целостности и системности собственного мышления и практики профессиональной деятельности рекомендуется провести работу по следующим темам (консультации на сайте systemtechnology.ru):

    1) разработка модели вложенности сфер деятельности для: семьи, фирмы, консорциума, некоммерческой организации, партии;

    2) разработка методик применения Принципа и Закона целостности для построения модели вложенности конкретных (по выбору) сфер деятельности;

    3) разработка методик применения Принципов и Закона развития целого для построения модели вложенности конкретных (по выбору) сфер деятельности;

    4) разработка методик применения моделей целого и целостного для построения модели вложенности конкретных (по выбору) сфер деятельности;

    5) разработка целостного метода построения модели вложенности конкретных (по выбору) сфер деятельности.


    Примечания:



    1

    Хаммер М., Чампи Дж. Реинжиниринг корпорации: Манифест революции в бизнесе /Пер. с англ. – СПб.: Изд-во СПбУ, 1997. – 332 с.



    10

    Поваров Г.Н. Ампер и кибернетика. Изд.2. М., 2007. 96 с.



    11

    Сучилин А.М. Применение направленных графов к задачам электротехники. Л., «Энергия», 1971. – 104 с.



    107

    Телемтаев М.М. Исследование аналитической модели организационно-технических систем (системная технология). В кн.: “Вопросы кибернетики”, под ред. Р.М.Суслова и А.П.Реутова; М.: изд. н/с “Кибернетика” АН СССР, 1981, ВК-72, с.124–136; Системная технология (основные задачи, принципы и правила разработки).-Вестник АН КазССР, Алма-Ата,1987,№ 1,с.46–52.



    108

    Телемтаев М.М. Государственное системное управление. Системная философия государственной деятельности. – Алматы, ИЦ «ИНФОПРЕСС», 2002. – 403 с.



    109

    Телемтаев М.М. Целостный инженеринг. – М.: ИД «ЭКО», 2005. – 408 с.



    110

    Хаммер М., Чампи Дж. Реинжиниринг корпорации: Манифест революции в бизнесе /Пер. с англ. – СПб.: Изд-во СПбУ, 1997. – 332 с.



    111

    Телемтаев М.М.: Основы теории технологического подхода (системной технологии). Алма-Ата: КазНИИНТИ (деп. рук.№1715), 1987, 82с.; Алгебраическая модель технологической системы. Киев.: журн. АН СССР “Электронное моделирование”, 1990, т.12, №4, стр. 3–8.



    112

    Телемтаев М.М. Государственное системное управление. Системная философия государственной деятельности. – Алматы, ИЦ «ИНФОПРЕСС», 2002. – 403 с.



    113

    Телемтаев М.М. Системный анализ в управлении. Алма-Ата: КазПТИ, 1983, 86 с.; Организация больших систем информатики. Алма-Ата: КазГУ, 1989, 82с.; Государственное системное управление. Системная философия государственной деятельности. – Алматы, ИЦ «ИНФОПРЕСС», 2002. – 403 с.; Целостный инженеринг. – М.: ИД «ЭКО», 2005. – 408 с.



    114

    Телемтаев М.М. Системная технология (системная философия деятельности). – Алматы: ИД «СТ-Инфосервис», 1999. – 367 с.; Системная философия. – Алматы, ИЦ «ИНФОПРЕСС», 2001. – 210 с.



    115

    Телемтаев М.М. Системная философия. – Алматы, ИЦ «ИНФОПРЕСС», 2001. – 210 с.








    Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Наверх