|
||||
|
41. ДЕТЕРМИНИЗМ И ПРИЧИННОСТЬ В СОВРЕМЕННОЙ ФИЗИКЕ, ДИНАМИЧЕСКИЕ И СТАТИСТИЧЕСКИЕ ЗАКОНЫ Что общего между прыгающим по земле мячиком, лазером, планетной системой, бурлящим потоком воды в ручье, биологической популяцией? Общее в том, что все эти объекты могут рассматриваться как динамические системы. Абстрагируясь от конкретной физической природы объекта, о нем говорят как о динамической системе, если можно указать такой набор величин, называемых динамическими переменными и характеризующих состояние системы, что их значения в любой последующий момент времени получаются из исходного набора по определенному правилу. Это правило задает, как говорят, оператор эволюции системы. Например, для прыгающего мячика оператор эволюции определяется законами движения в поле тяжести и удара мячика о поверхность. Мгновенное состояние задается двумя величинами – расстоянием от земли и скоростью. Геометрически оно изображается как точка на фазовой плоскости, где эти две величины отложены, соответственно, по оси абсцисс и ординат. Изменение состояния во времени, или, для краткости, динамика системы, отвечает движению изображающей точки по определенной кривой – фазовой траектории. Если состояние системы задается набором N величин, динамику можно представить как движение точки по траектории в N-мерном фазовом пространстве. Выделяют два класса динамических систем – консервативные (к ним относятся, например, механические колебательные системы в отсутствие трения) и диссипативные. Для диссипативных систем характерно то, что режим динамики, возникающий в системе, предоставленной себе в течение длительного времени, становится не зависящим от начального состояния (по крайней мере при вариации начальных условий в некоторых конечных пределах). Множество точек в фазовом пространстве диссипативной системы, посещаемых в установившемся режиме, называется аттрактором. Простые примеры аттракторов – устойчивое состояние равновесия и предельный цикл, отвечающий режиму периодических автоколебаний (замкнутая фазовая траектория, на которую наматываются все близкие траектории). Замечательным достижением теории динамических систем стало открытие хаотической динамики. Возникновение хаоса кажется на первый взгляд несовместимым с определением динамической системы, подразумевающим возможность однозначного предсказания конечного состояния по исходному. На самом деле противоречия нет. В хаотическом режиме сколь угодно малая неточность в задании начального состояния системы быстро нарастает во времени, так что предсказуемость становится недостижимой на достаточно больших интервалах времени. Такого рода режимы характеризуются нерегулярным, хаотическим изменением динамических переменных во времени. В фазовом пространстве диссипативных систем им отвечают странные аттракторы – сложно устроенные множества, демонстрирующие все более тонкую структуру на разных уровнях ее разрешения. Первая линия развития, которая вела к представлениям о динамическом хаосе, связана с небесной механикой. Основоположниками классической механики принято считать И. Ньютона, Ж.Л. Лагранжа, П.С. Лапласа, У.Р. Гамильтона. Они сформировали представления о том, что мы сейчас называем гамильтоновой, или консервативной, динамической системой. |
|
||
Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Наверх |
||||
|